96efd9052f
* Re-introduce the llama package This PR brings back the llama package, making it possible to call llama.cpp and ggml APIs from Go directly via CGo. This has a few advantages: - C APIs can be called directly from Go without needing to use the previous "server" REST API - On macOS and for CPU builds on Linux and Windows, Ollama can be built without a go generate ./... step, making it easy to get up and running to hack on parts of Ollama that don't require fast inference - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners takes <5 min on a fast CPU) - No git submodule making it easier to clone and build from source This is a big PR, but much of it is vendor code except for: - llama.go CGo bindings - example/: a simple example of running inference - runner/: a subprocess server designed to replace the llm/ext_server package - Makefile an as minimal as possible Makefile to build the runner package for different targets (cpu, avx, avx2, cuda, rocm) Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> * cache: Clear old KV cache entries when evicting a slot When forking a cache entry, if no empty slots are available we evict the least recently used one and copy over the KV entries from the closest match. However, this copy does not overwrite existing values but only adds new ones. Therefore, we need to clear the old slot first. This change fixes two issues: - The KV cache fills up and runs out of space even though we think we are managing it correctly - Performance gets worse over time as we use new cache entries that are not hot in the processor caches * doc: explain golang objc linker warning (#6830) * llama: gather transitive dependencies for rocm for dist packaging (#6848) * Refine go server makefiles to be more DRY (#6924) This breaks up the monolithic Makefile for the Go based runners into a set of utility files as well as recursive Makefiles for the runners. Files starting with the name "Makefile" are buildable, while files that end with ".make" are utilities to include in other Makefiles. This reduces the amount of nearly identical targets and helps set a pattern for future community contributions for new GPU runner architectures. When we are ready to switch over to the Go runners, these files should move to the top of the repo, and we should add targets for the main CLI, as well as a helper "install" (put all the built binaries on the local system in a runnable state) and "dist" target (generate the various tar/zip files for distribution) for local developer use. * llama: don't create extraneous directories (#6988) * llama: Exercise the new build in CI (#6989) Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet. * llama: Refine developer docs for Go server (#6842) This enhances the documentation for development focusing on the new Go server. After we complete the transition further doc refinements can remove the "transition" discussion. * runner.go: Allocate batches for all sequences during init We should tell the model that we could have full batches for all sequences. We already do this when we allocate the batches but it was missed during initialization. * llama.go: Don't return nil from Tokenize on zero length input Potentially receiving nil in a non-error condition is surprising to most callers - it's better to return an empty slice. * runner.go: Remove stop tokens from cache If the last token is EOG then we don't return this and it isn't present in the cache (because it was never submitted to Decode). This works well for extending the cache entry with a new sequence. However, for multi-token stop sequences, we won't return any of the tokens but all but the last one will be in the cache. This means when the conversation continues the cache will contain tokens that don't overlap with the new prompt. This works (we will pick up the portion where there is overlap) but it causes unnecessary cache thrashing because we will fork the original cache entry as it is not a perfect match. By trimming the cache to the tokens that we actually return this issue can be avoided. * runner.go: Simplify flushing of pending tokens * runner.go: Update TODOs * runner.go: Don't panic when processing sequences If there is an error processing a sequence, we should return a clean HTTP error back to Ollama rather than panicing. This will make us more resilient to transient failures. Panics can still occur during startup as there is no way to serve requests if that fails. Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: More accurately capture timings Currently prompt processing time doesn't capture the that it takes to tokenize the input, only decoding time. We should capture the full process to more accurately reflect reality. This is especially true once we start processing images where the initial processing can take significant time. This is also more consistent with the existing C++ runner. * runner.go: Support for vision models In addition to bringing feature parity with the C++ runner, this also incorporates several improvements: - Cache prompting works with images, avoiding the need to re-decode embeddings for every message in a conversation - Parallelism is supported, avoiding the need to restrict to one sequence at a time. (Though for now Ollama will not schedule them while we might need to fall back to the old runner.) Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: Move Unicode checking code and add tests * runner.go: Export external cache members Runner and cache are in the same package so the change doesn't affect anything but it is more internally consistent. * runner.go: Image embedding cache Generating embeddings from images can take significant time (on my machine between 100ms and 8s depending on the model). Although we already cache the result of decoding these images, the embeddings need to be regenerated every time. This is not necessary if we get the same image over and over again, for example, during a conversation. This currently uses a very small cache with a very simple algorithm but it is easy to improve as is warranted. * llama: catch up on patches Carry forward solar-pro and cli-unicode patches * runner.go: Don't re-allocate memory for every batch We can reuse memory allocated from batch to batch since batch size is fixed. This both saves the cost of reallocation as well keeps the cache lines hot. This results in a roughly 1% performance improvement for token generation with Nvidia GPUs on Linux. * runner.go: Default to classic input cache policy The input cache as part of the go runner implemented a cache policy that aims to maximize hit rate in both single and multi- user scenarios. When there is a cache hit, the response is very fast. However, performance is actually slower when there is an input cache miss due to worse GPU VRAM locality. This means that performance is generally better overall for multi-user scenarios (better input cache hit rate, locality was relatively poor already). But worse for single users (input cache hit rate is about the same, locality is now worse). This defaults the policy back to the old one to avoid a regression but keeps the new one available through an environment variable OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is to improve this in the future to get the best of both worlds without user configuration. For inputs that result in cache misses, on Nvidia/Linux this change improves performance by 31% for prompt processing and 13% for token generation. * runner.go: Increase size of response channel Generally the CPU can easily keep up with handling reponses that are generated but there's no reason not to let generation continue and handle things in larger batches if needed. * llama: Add CI to verify all vendored changes have patches (#7066) Make sure we don't accidentally merge changes in the vendored code that aren't also reflected in the patches. * llama: adjust clip patch for mingw utf-16 (#7065) * llama: adjust clip patch for mingw utf-16 * llama: ensure static linking of runtime libs Avoid runtime dependencies on non-standard libraries * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS) These are two features that are shown on llama.cpp's system info that are currently different between the two runners. On my test systems the performance difference is very small to negligible but it is probably still good to equalize the features. * llm: Don't add BOS/EOS for tokenize requests This is consistent with what server.cpp currently does. It affects things like token processing counts for embedding requests. * runner.go: Don't cache prompts for embeddings Our integration with server.cpp implicitly disables prompt caching because it is not part of the JSON object being parsed, this makes the Go runner behavior similarly. Prompt caching has been seen to affect the results of text completions on certain hardware. The results are not wrong either way but they are non-deterministic. However, embeddings seem to be affected even on hardware that does not show this behavior for completions. For now, it is best to maintain consistency with the existing behavior. * runner.go: Adjust debug log levels Add system info printed at startup and quiet down noisier logging. * llama: fix compiler flag differences (#7082) Adjust the flags for the new Go server to more closely match the generate flow * llama: refine developer docs (#7121) * llama: doc and example clean up (#7122) * llama: doc and example clean up * llama: Move new dockerfile into llama dir Temporary home until we fully transition to the Go server * llama: runner doc cleanup * llama.go: Add description for Tokenize error case --------- Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
779 lines
21 KiB
C
Vendored
779 lines
21 KiB
C
Vendored
/**
|
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include "ggml.h"
|
|
|
|
// GGML internal header
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
|
|
#include <stddef.h>
|
|
#include <stdbool.h>
|
|
#include <string.h> // memcpy
|
|
#include <math.h> // fabsf
|
|
|
|
#undef MIN
|
|
#undef MAX
|
|
|
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
#define m512bh(p) p
|
|
#define m512i(p) p
|
|
|
|
#else
|
|
|
|
#define m512bh(p) (__m512bh)(p)
|
|
#define m512i(p) (__m512i)(p)
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Converts brain16 to float32.
|
|
*
|
|
* The bfloat16 floating point format has the following structure:
|
|
*
|
|
* ┌sign
|
|
* │
|
|
* │ ┌exponent
|
|
* │ │
|
|
* │ │ ┌mantissa
|
|
* │ │ │
|
|
* │┌──┴───┐┌─┴───┐
|
|
* 0b0000000000000000 brain16
|
|
*
|
|
* Since bf16 has the same number of exponent bits as a 32bit float,
|
|
* encoding and decoding numbers becomes relatively straightforward.
|
|
*
|
|
* ┌sign
|
|
* │
|
|
* │ ┌exponent
|
|
* │ │
|
|
* │ │ ┌mantissa
|
|
* │ │ │
|
|
* │┌──┴───┐┌─┴───────────────────┐
|
|
* 0b00000000000000000000000000000000 IEEE binary32
|
|
*
|
|
* For comparison, the standard fp16 format has fewer exponent bits.
|
|
*
|
|
* ┌sign
|
|
* │
|
|
* │ ┌exponent
|
|
* │ │
|
|
* │ │ ┌mantissa
|
|
* │ │ │
|
|
* │┌─┴─┐┌─┴──────┐
|
|
* 0b0000000000000000 IEEE binary16
|
|
*
|
|
* @see IEEE 754-2008
|
|
*/
|
|
static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
|
|
union {
|
|
float f;
|
|
uint32_t i;
|
|
} u;
|
|
u.i = (uint32_t)h.bits << 16;
|
|
return u.f;
|
|
}
|
|
|
|
/**
|
|
* Converts float32 to brain16.
|
|
*
|
|
* This is binary identical with Google Brain float conversion.
|
|
* Floats shall round to nearest even, and NANs shall be quiet.
|
|
* Subnormals aren't flushed to zero, except perhaps when used.
|
|
* This code should vectorize nicely if using modern compilers.
|
|
*/
|
|
static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
|
|
ggml_bf16_t h;
|
|
union {
|
|
float f;
|
|
uint32_t i;
|
|
} u;
|
|
u.f = s;
|
|
if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
|
|
h.bits = (u.i >> 16) | 64; /* force to quiet */
|
|
return h;
|
|
}
|
|
h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
|
|
return h;
|
|
}
|
|
|
|
#define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
|
|
#define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
// static_assert should be a #define, but if it's not,
|
|
// fall back to the _Static_assert C11 keyword.
|
|
// if C99 - static_assert is noop
|
|
// ref: https://stackoverflow.com/a/53923785/4039976
|
|
#ifndef __cplusplus
|
|
#ifndef static_assert
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
|
|
#define static_assert(cond, msg) _Static_assert(cond, msg)
|
|
#else
|
|
#define static_assert(cond, msg) struct global_scope_noop_trick
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
|
|
#if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
|
|
#ifndef __FMA__
|
|
#define __FMA__
|
|
#endif
|
|
#ifndef __F16C__
|
|
#define __F16C__
|
|
#endif
|
|
#endif
|
|
|
|
// __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
|
|
#if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
|
|
#ifndef __SSE3__
|
|
#define __SSE3__
|
|
#endif
|
|
#ifndef __SSSE3__
|
|
#define __SSSE3__
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__ARM_FEATURE_SVE)
|
|
#include <arm_sve.h>
|
|
#include <sys/prctl.h>
|
|
#endif
|
|
|
|
// 16-bit float
|
|
// on Arm, we use __fp16
|
|
// on x86, we use uint16_t
|
|
#if defined(__ARM_NEON)
|
|
|
|
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
|
//
|
|
// $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
|
|
//
|
|
#include <arm_neon.h>
|
|
|
|
#ifdef _MSC_VER
|
|
|
|
typedef uint16_t ggml_fp16_internal_t;
|
|
|
|
#define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
|
|
|
|
#else
|
|
|
|
typedef __fp16 ggml_fp16_internal_t;
|
|
|
|
#define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
|
|
|
|
#endif // _MSC_VER
|
|
|
|
#if !defined(__aarch64__)
|
|
|
|
// 32-bit ARM compatibility
|
|
|
|
// vaddvq_s16
|
|
// vpaddq_s16
|
|
// vpaddq_s32
|
|
// vaddvq_s32
|
|
// vaddvq_f32
|
|
// vmaxvq_f32
|
|
// vcvtnq_s32_f32
|
|
// vzip1_u8
|
|
// vzip2_u8
|
|
|
|
inline static int32_t vaddvq_s16(int16x8_t v) {
|
|
return
|
|
(int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
|
|
(int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
|
|
(int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
|
|
(int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
|
|
}
|
|
|
|
inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
|
|
int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
|
|
int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
|
|
return vcombine_s16(a0, b0);
|
|
}
|
|
|
|
inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
|
|
int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
|
|
int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
|
|
return vcombine_s32(a0, b0);
|
|
}
|
|
|
|
inline static int32_t vaddvq_s32(int32x4_t v) {
|
|
return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
|
|
}
|
|
|
|
inline static float vaddvq_f32(float32x4_t v) {
|
|
return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
|
|
}
|
|
|
|
inline static float vmaxvq_f32(float32x4_t v) {
|
|
return
|
|
MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
|
|
MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
|
|
}
|
|
|
|
inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
|
|
int32x4_t res;
|
|
|
|
res[0] = roundf(vgetq_lane_f32(v, 0));
|
|
res[1] = roundf(vgetq_lane_f32(v, 1));
|
|
res[2] = roundf(vgetq_lane_f32(v, 2));
|
|
res[3] = roundf(vgetq_lane_f32(v, 3));
|
|
|
|
return res;
|
|
}
|
|
|
|
inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
|
|
uint8x8_t res;
|
|
|
|
res[0] = a[0]; res[1] = b[0];
|
|
res[2] = a[1]; res[3] = b[1];
|
|
res[4] = a[2]; res[5] = b[2];
|
|
res[6] = a[3]; res[7] = b[3];
|
|
|
|
return res;
|
|
}
|
|
|
|
inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
|
|
uint8x8_t res;
|
|
|
|
res[0] = a[4]; res[1] = b[4];
|
|
res[2] = a[5]; res[3] = b[5];
|
|
res[4] = a[6]; res[5] = b[6];
|
|
res[6] = a[7]; res[7] = b[7];
|
|
|
|
return res;
|
|
}
|
|
|
|
// vld1q_s16_x2
|
|
// vld1q_u8_x2
|
|
// vld1q_u8_x4
|
|
// vld1q_s8_x2
|
|
// vld1q_s8_x4
|
|
// TODO: double-check these work correctly
|
|
|
|
typedef struct ggml_int16x8x2_t {
|
|
int16x8_t val[2];
|
|
} ggml_int16x8x2_t;
|
|
|
|
inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
|
|
ggml_int16x8x2_t res;
|
|
|
|
res.val[0] = vld1q_s16(ptr + 0);
|
|
res.val[1] = vld1q_s16(ptr + 8);
|
|
|
|
return res;
|
|
}
|
|
|
|
typedef struct ggml_uint8x16x2_t {
|
|
uint8x16_t val[2];
|
|
} ggml_uint8x16x2_t;
|
|
|
|
inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
|
|
ggml_uint8x16x2_t res;
|
|
|
|
res.val[0] = vld1q_u8(ptr + 0);
|
|
res.val[1] = vld1q_u8(ptr + 16);
|
|
|
|
return res;
|
|
}
|
|
|
|
typedef struct ggml_uint8x16x4_t {
|
|
uint8x16_t val[4];
|
|
} ggml_uint8x16x4_t;
|
|
|
|
inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
|
|
ggml_uint8x16x4_t res;
|
|
|
|
res.val[0] = vld1q_u8(ptr + 0);
|
|
res.val[1] = vld1q_u8(ptr + 16);
|
|
res.val[2] = vld1q_u8(ptr + 32);
|
|
res.val[3] = vld1q_u8(ptr + 48);
|
|
|
|
return res;
|
|
}
|
|
|
|
typedef struct ggml_int8x16x2_t {
|
|
int8x16_t val[2];
|
|
} ggml_int8x16x2_t;
|
|
|
|
inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
|
|
ggml_int8x16x2_t res;
|
|
|
|
res.val[0] = vld1q_s8(ptr + 0);
|
|
res.val[1] = vld1q_s8(ptr + 16);
|
|
|
|
return res;
|
|
}
|
|
|
|
typedef struct ggml_int8x16x4_t {
|
|
int8x16_t val[4];
|
|
} ggml_int8x16x4_t;
|
|
|
|
inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
|
ggml_int8x16x4_t res;
|
|
|
|
res.val[0] = vld1q_s8(ptr + 0);
|
|
res.val[1] = vld1q_s8(ptr + 16);
|
|
res.val[2] = vld1q_s8(ptr + 32);
|
|
res.val[3] = vld1q_s8(ptr + 48);
|
|
|
|
return res;
|
|
}
|
|
|
|
// NOTE: not tested
|
|
inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
|
|
int8x16_t res;
|
|
|
|
res[ 0] = a[b[ 0]];
|
|
res[ 1] = a[b[ 1]];
|
|
res[ 2] = a[b[ 2]];
|
|
res[ 3] = a[b[ 3]];
|
|
res[ 4] = a[b[ 4]];
|
|
res[ 5] = a[b[ 5]];
|
|
res[ 6] = a[b[ 6]];
|
|
res[ 7] = a[b[ 7]];
|
|
res[ 8] = a[b[ 8]];
|
|
res[ 9] = a[b[ 9]];
|
|
res[10] = a[b[10]];
|
|
res[11] = a[b[11]];
|
|
res[12] = a[b[12]];
|
|
res[13] = a[b[13]];
|
|
res[14] = a[b[14]];
|
|
res[15] = a[b[15]];
|
|
|
|
return res;
|
|
}
|
|
|
|
// NOTE: not tested
|
|
inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
|
|
uint8x16_t res;
|
|
|
|
res[ 0] = a[b[ 0]];
|
|
res[ 1] = a[b[ 1]];
|
|
res[ 2] = a[b[ 2]];
|
|
res[ 3] = a[b[ 3]];
|
|
res[ 4] = a[b[ 4]];
|
|
res[ 5] = a[b[ 5]];
|
|
res[ 6] = a[b[ 6]];
|
|
res[ 7] = a[b[ 7]];
|
|
res[ 8] = a[b[ 8]];
|
|
res[ 9] = a[b[ 9]];
|
|
res[10] = a[b[10]];
|
|
res[11] = a[b[11]];
|
|
res[12] = a[b[12]];
|
|
res[13] = a[b[13]];
|
|
res[14] = a[b[14]];
|
|
res[15] = a[b[15]];
|
|
|
|
return res;
|
|
}
|
|
|
|
#else
|
|
|
|
#define ggml_int16x8x2_t int16x8x2_t
|
|
#define ggml_uint8x16x2_t uint8x16x2_t
|
|
#define ggml_uint8x16x4_t uint8x16x4_t
|
|
#define ggml_int8x16x2_t int8x16x2_t
|
|
#define ggml_int8x16x4_t int8x16x4_t
|
|
|
|
#define ggml_vld1q_s16_x2 vld1q_s16_x2
|
|
#define ggml_vld1q_u8_x2 vld1q_u8_x2
|
|
#define ggml_vld1q_u8_x4 vld1q_u8_x4
|
|
#define ggml_vld1q_s8_x2 vld1q_s8_x2
|
|
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
|
#define ggml_vqtbl1q_s8 vqtbl1q_s8
|
|
#define ggml_vqtbl1q_u8 vqtbl1q_u8
|
|
|
|
#endif // !defined(__aarch64__)
|
|
|
|
#if !defined(__ARM_FEATURE_DOTPROD)
|
|
|
|
inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
|
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
|
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
|
|
|
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
|
}
|
|
|
|
#else
|
|
|
|
#define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
|
|
|
|
#endif // !defined(__ARM_FEATURE_DOTPROD)
|
|
|
|
#endif // defined(__ARM_NEON)
|
|
|
|
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
|
|
|
#define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
|
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
|
ggml_fp16_internal_t tmp;
|
|
memcpy(&tmp, &h, sizeof(ggml_fp16_t));
|
|
return (float)tmp;
|
|
}
|
|
|
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|
ggml_fp16_t res;
|
|
ggml_fp16_internal_t tmp = f;
|
|
memcpy(&res, &tmp, sizeof(ggml_fp16_t));
|
|
return res;
|
|
}
|
|
|
|
#else
|
|
|
|
#ifdef __wasm_simd128__
|
|
#include <wasm_simd128.h>
|
|
#else
|
|
#ifdef __POWER9_VECTOR__
|
|
#include <altivec.h>
|
|
#undef bool
|
|
#define bool _Bool
|
|
#else
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
#include <intrin.h>
|
|
#else
|
|
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
|
|
#if !defined(__riscv)
|
|
#include <immintrin.h>
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef __riscv_v_intrinsic
|
|
#include <riscv_vector.h>
|
|
#endif
|
|
|
|
#if defined(__loongarch64)
|
|
#if defined(__loongarch_asx)
|
|
#include <lasxintrin.h>
|
|
#endif
|
|
#if defined(__loongarch_sx)
|
|
#include <lsxintrin.h>
|
|
#endif
|
|
#endif
|
|
|
|
#if defined(__loongarch_asx)
|
|
|
|
typedef union {
|
|
int32_t i;
|
|
float f;
|
|
} ft_union;
|
|
|
|
/* float type data load instructions */
|
|
static __m128 __lsx_vreplfr2vr_s(float val) {
|
|
ft_union fi_tmpval = {.f = val};
|
|
return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
|
|
}
|
|
|
|
static __m256 __lasx_xvreplfr2vr_s(float val) {
|
|
ft_union fi_tmpval = {.f = val};
|
|
return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
|
|
}
|
|
#endif
|
|
|
|
#ifdef __F16C__
|
|
|
|
#ifdef _MSC_VER
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
|
|
#else
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
|
|
#endif
|
|
|
|
#elif defined(__POWER9_VECTOR__)
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
|
/* the inline asm below is about 12% faster than the lookup method */
|
|
#define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
|
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
|
|
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
|
register float f;
|
|
register double d;
|
|
__asm__(
|
|
"mtfprd %0,%2\n"
|
|
"xscvhpdp %0,%0\n"
|
|
"frsp %1,%0\n" :
|
|
/* temp */ "=d"(d),
|
|
/* out */ "=f"(f):
|
|
/* in */ "r"(h));
|
|
return f;
|
|
}
|
|
|
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|
register double d;
|
|
register ggml_fp16_t r;
|
|
__asm__( /* xscvdphp can work on double or single precision */
|
|
"xscvdphp %0,%2\n"
|
|
"mffprd %1,%0\n" :
|
|
/* temp */ "=d"(d),
|
|
/* out */ "=r"(r):
|
|
/* in */ "f"(f));
|
|
return r;
|
|
}
|
|
|
|
#else
|
|
|
|
// FP16 <-> FP32
|
|
// ref: https://github.com/Maratyszcza/FP16
|
|
|
|
static inline float fp32_from_bits(uint32_t w) {
|
|
union {
|
|
uint32_t as_bits;
|
|
float as_value;
|
|
} fp32;
|
|
fp32.as_bits = w;
|
|
return fp32.as_value;
|
|
}
|
|
|
|
static inline uint32_t fp32_to_bits(float f) {
|
|
union {
|
|
float as_value;
|
|
uint32_t as_bits;
|
|
} fp32;
|
|
fp32.as_value = f;
|
|
return fp32.as_bits;
|
|
}
|
|
|
|
static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
|
|
const uint32_t w = (uint32_t) h << 16;
|
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
|
const uint32_t two_w = w + w;
|
|
|
|
const uint32_t exp_offset = UINT32_C(0xE0) << 23;
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
|
const float exp_scale = 0x1.0p-112f;
|
|
#else
|
|
const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
|
|
#endif
|
|
const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
|
|
|
|
const uint32_t magic_mask = UINT32_C(126) << 23;
|
|
const float magic_bias = 0.5f;
|
|
const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
|
|
|
|
const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
|
|
const uint32_t result = sign |
|
|
(two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
|
|
return fp32_from_bits(result);
|
|
}
|
|
|
|
static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
|
|
#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
|
|
const float scale_to_inf = 0x1.0p+112f;
|
|
const float scale_to_zero = 0x1.0p-110f;
|
|
#else
|
|
const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
|
|
const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
|
|
#endif
|
|
float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
|
|
|
|
const uint32_t w = fp32_to_bits(f);
|
|
const uint32_t shl1_w = w + w;
|
|
const uint32_t sign = w & UINT32_C(0x80000000);
|
|
uint32_t bias = shl1_w & UINT32_C(0xFF000000);
|
|
if (bias < UINT32_C(0x71000000)) {
|
|
bias = UINT32_C(0x71000000);
|
|
}
|
|
|
|
base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
|
|
const uint32_t bits = fp32_to_bits(base);
|
|
const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
|
|
const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
|
|
const uint32_t nonsign = exp_bits + mantissa_bits;
|
|
return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
|
|
}
|
|
|
|
#define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
|
|
#define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
|
|
|
|
#endif // __F16C__
|
|
|
|
#endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
|
|
|
|
#ifdef __ARM_FEATURE_SVE
|
|
#include <arm_sve.h>
|
|
#endif // __ARM_FEATURE_SVE
|
|
|
|
// precomputed f32 table for f16 (256 KB)
|
|
// defined in ggml.c, initialized in ggml_init()
|
|
extern float ggml_table_f32_f16[1 << 16];
|
|
|
|
// On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
|
|
// so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
|
|
// This is also true for POWER9.
|
|
#if !defined(GGML_FP16_TO_FP32)
|
|
inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
|
|
uint16_t s;
|
|
memcpy(&s, &f, sizeof(uint16_t));
|
|
return ggml_table_f32_f16[s];
|
|
}
|
|
|
|
#define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
|
|
#endif
|
|
|
|
#if !defined(GGML_FP32_TO_FP16)
|
|
#define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
|
|
#endif
|
|
|
|
// bitset
|
|
|
|
static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
|
|
#define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
|
|
#define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
|
|
|
|
static size_t ggml_bitset_size(size_t n) {
|
|
return (n + BITSET_MASK) >> BITSET_SHR;
|
|
}
|
|
|
|
static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
|
|
return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
|
|
}
|
|
|
|
static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
|
|
bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
|
|
}
|
|
|
|
static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
|
|
bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
|
|
}
|
|
|
|
// hash set
|
|
|
|
#define GGML_HASHSET_FULL ((size_t)-1)
|
|
#define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
|
|
|
|
struct ggml_hash_set ggml_hash_set_new(size_t size);
|
|
void ggml_hash_set_free(struct ggml_hash_set * hash_set);
|
|
|
|
// returns the minimum size for a hash set that can hold min_sz elements
|
|
size_t ggml_hash_size(size_t min_sz);
|
|
|
|
// remove all elements from the hash set
|
|
void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
|
|
|
|
// returns true if key is in the hash set
|
|
static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
|
|
|
|
// returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
|
|
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
|
|
|
|
// returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
|
|
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
|
|
|
|
// return index, asserts if table is full
|
|
static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
|
|
|
|
// hash function for ggml_tensor
|
|
static inline size_t ggml_hash(const struct ggml_tensor * p) {
|
|
// the last 4 bits are always zero due to alignment
|
|
return (size_t)(uintptr_t)p >> 4;
|
|
}
|
|
|
|
static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
|
|
size_t h = ggml_hash(key) % hash_set->size;
|
|
|
|
// linear probing
|
|
size_t i = h;
|
|
while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
|
|
i = (i + 1) % hash_set->size;
|
|
if (i == h) {
|
|
// visited all hash table entries -> not found
|
|
return GGML_HASHSET_FULL;
|
|
}
|
|
}
|
|
return i;
|
|
}
|
|
|
|
static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
|
|
size_t i = ggml_hash_find(hash_set, key);
|
|
return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
|
|
}
|
|
|
|
static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
|
|
size_t h = ggml_hash(key) % hash_set->size;
|
|
|
|
// linear probing
|
|
size_t i = h;
|
|
do {
|
|
if (!ggml_bitset_get(hash_set->used, i)) {
|
|
ggml_bitset_set(hash_set->used, i);
|
|
hash_set->keys[i] = key;
|
|
return i;
|
|
}
|
|
if (hash_set->keys[i] == key) {
|
|
return GGML_HASHSET_ALREADY_EXISTS;
|
|
}
|
|
i = (i + 1) % hash_set->size;
|
|
} while (i != h);
|
|
|
|
// visited all hash table entries -> not found
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
|
|
size_t h = ggml_hash(key) % hash_set->size;
|
|
|
|
// linear probing
|
|
size_t i = h;
|
|
do {
|
|
if (!ggml_bitset_get(hash_set->used, i)) {
|
|
ggml_bitset_set(hash_set->used, i);
|
|
hash_set->keys[i] = key;
|
|
return i;
|
|
}
|
|
if (hash_set->keys[i] == key) {
|
|
return i;
|
|
}
|
|
i = (i + 1) % hash_set->size;
|
|
} while (i != h);
|
|
|
|
// visited all hash table entries -> not found
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|