ollama/examples/python-rag-newssummary/summ.py
Matt Williams c5c8b4b16a added python rag news summary
Signed-off-by: Matt Williams <m@technovangelist.com>
2023-10-17 16:41:28 -07:00

86 lines
2.6 KiB
Python

import curses
import json
from utils import get_url_for_topic, topic_urls, menu, getUrls, get_summary, getArticleText, knn_search
import requests
from sentence_transformers import SentenceTransformer
from mattsollamatools import chunker
if __name__ == "__main__":
chosen_topic = curses.wrapper(menu)
print("Here is your news summary:\n")
urls = getUrls(chosen_topic, n=5)
model = SentenceTransformer('all-MiniLM-L6-v2')
allEmbeddings = []
for url in urls:
article={}
article['embeddings'] = []
article['url'] = url
text = getArticleText(url)
summary = get_summary(text)
chunks = chunker(text) # Use the chunk_text function from web_utils
embeddings = model.encode(chunks)
for (chunk, embedding) in zip(chunks, embeddings):
item = {}
item['source'] = chunk
item['embedding'] = embedding.tolist() # Convert NumPy array to list
item['sourcelength'] = len(chunk)
article['embeddings'].append(item)
allEmbeddings.append(article)
print(f"{summary}\n")
while True:
context = []
# Input a question from the user
question = input("Enter your question about the news, or type quit: ")
if question.lower() == 'quit':
break
# Embed the user's question
question_embedding = model.encode([question])
# Perform KNN search to find the best matches (indices and source text)
best_matches = knn_search(question_embedding, allEmbeddings, k=10)
sourcetext=""
for i, (index, source_text) in enumerate(best_matches, start=1):
sourcetext += f"{i}. Index: {index}, Source Text: {source_text}"
systemPrompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
url = "http://localhost:11434/api/generate"
payload = {
"model": "mistral-openorca",
"prompt": question,
"system": systemPrompt,
"stream": False,
"context": context
}
# Convert the payload to a JSON string
payload_json = json.dumps(payload)
# Set the headers to specify JSON content
headers = {
"Content-Type": "application/json"
}
# Send the POST request
response = requests.post(url, data=payload_json, headers=headers)
# Check the response
if response.status_code == 200:
output = json.loads(response.text)
context = output['context']
print(output['response']+ "\n")
else:
print(f"Request failed with status code {response.status_code}")