ollama/llm/ext_server/server.cpp
2024-05-29 11:26:47 -07:00

3206 lines
121 KiB
C++
Vendored

// MIT License
// Copyright (c) 2023 Georgi Gerganov
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
#include "common.h"
#include "llama.h"
#include "grammar-parser.h"
#include "utils.hpp"
#include "../llava/clip.h"
#include "../llava/llava.h"
#include "stb_image.h"
#ifndef NDEBUG
// crash the server in debug mode, otherwise send an http 500 error
#define CPPHTTPLIB_NO_EXCEPTIONS 1
#endif
// increase max payload length to allow use of larger context size
#define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
#include "httplib.h"
#include "json.hpp"
#if defined(_WIN32)
#include <windows.h>
#endif
#include <cstddef>
#include <thread>
#include <chrono>
#include <condition_variable>
#include <atomic>
#include <signal.h>
using json = nlohmann::json;
struct server_params {
std::string hostname = "127.0.0.1";
std::vector<std::string> api_keys;
std::string public_path = "examples/server/public";
std::string chat_template = "";
int32_t port = 8080;
int32_t read_timeout = 600;
int32_t write_timeout = 600;
bool slots_endpoint = true;
bool metrics_endpoint = false;
int n_threads_http = -1;
};
bool server_verbose = false;
bool server_log_json = false;
enum stop_type {
STOP_FULL,
STOP_PARTIAL,
};
// TODO: can become bool if we can't find use of more states
enum slot_state {
IDLE,
PROCESSING,
};
enum slot_command {
NONE,
LOAD_PROMPT,
RELEASE,
};
struct slot_params {
bool stream = true;
bool cache_prompt = false; // remember the prompt to avoid reprocessing all prompt
uint32_t seed = -1; // RNG seed
int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_predict = -1; // new tokens to predict
std::vector<std::string> antiprompt;
json input_prefix;
json input_suffix;
};
struct slot_image {
int32_t id;
bool request_encode_image = false;
float * image_embedding = nullptr;
int32_t image_tokens = 0;
clip_image_u8 * img_data;
std::string prefix_prompt; // before of this image
};
struct server_slot {
int id;
int task_id = -1;
struct slot_params params;
slot_state state = IDLE;
slot_command command = NONE;
// used to determine the slot that has been used the longest
int64_t t_last_used = -1;
// generation props
int32_t n_ctx = 0; // context size per slot
int32_t n_past = 0;
int32_t n_decoded = 0;
int32_t n_remaining = -1;
int32_t i_batch = -1;
int32_t n_predict = -1;
int32_t n_prompt_tokens = 0;
int32_t n_prompt_tokens_processed = 0;
json prompt;
std::string generated_text;
llama_token sampled;
std::vector<llama_token> cache_tokens;
std::vector<completion_token_output> generated_token_probs;
bool embedding = false;
bool has_next_token = true;
bool truncated = false;
bool stopped_eos = false;
bool stopped_word = false;
bool stopped_limit = false;
std::string stopping_word;
// sampling
struct llama_sampling_params sparams;
llama_sampling_context *ctx_sampling = nullptr;
int32_t ga_i = 0; // group-attention state
int32_t ga_n = 1; // group-attention factor
int32_t ga_w = 512; // group-attention width
int32_t n_past_se = 0; // self-extend
// multimodal
std::vector<slot_image> images;
// stats
size_t n_sent_text = 0; // number of sent text character
size_t n_sent_token_probs = 0;
int64_t t_start_process_prompt;
int64_t t_start_genereration;
double t_prompt_processing; // ms
double t_token_generation; // ms
// multitasks
int multitask_id = -1;
void reset() {
n_prompt_tokens = 0;
generated_text = "";
truncated = false;
stopped_eos = false;
stopped_word = false;
stopped_limit = false;
stopping_word = "";
n_past = 0;
n_sent_text = 0;
n_sent_token_probs = 0;
ga_i = 0;
n_past_se = 0;
generated_token_probs.clear();
for (slot_image & img : images) {
free(img.image_embedding);
if (img.img_data) {
clip_image_u8_free(img.img_data);
}
img.prefix_prompt = "";
}
images.clear();
}
bool has_budget(gpt_params &global_params) {
if (params.n_predict == -1 && global_params.n_predict == -1) {
return true; // limitless
}
n_remaining = -1;
if (params.n_predict != -1) {
n_remaining = params.n_predict - n_decoded;
} else if (global_params.n_predict != -1) {
n_remaining = global_params.n_predict - n_decoded;
}
return n_remaining > 0; // no budget
}
bool available() const {
return state == IDLE && command == NONE;
}
bool is_processing() const {
return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
}
void add_token_string(const completion_token_output &token) {
if (command == RELEASE) {
return;
}
cache_tokens.push_back(token.tok);
generated_token_probs.push_back(token);
}
void release() {
if (state == PROCESSING)
{
t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
command = RELEASE;
}
}
json get_formated_timings() {
return json
{
{"prompt_n", n_prompt_tokens_processed},
{"prompt_ms", t_prompt_processing},
{"prompt_per_token_ms", t_prompt_processing / n_prompt_tokens_processed},
{"prompt_per_second", 1e3 / t_prompt_processing * n_prompt_tokens_processed},
{"predicted_n", n_decoded},
{"predicted_ms", t_token_generation},
{"predicted_per_token_ms", t_token_generation / n_decoded},
{"predicted_per_second", 1e3 / t_token_generation * n_decoded},
};
}
void print_timings() const {
char buffer[512];
double t_token = t_prompt_processing / n_prompt_tokens_processed;
double n_tokens_second = 1e3 / t_prompt_processing * n_prompt_tokens_processed;
sprintf(buffer, "prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)",
t_prompt_processing, n_prompt_tokens_processed,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
{"n_prompt_tokens_processed", n_prompt_tokens_processed},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
t_token = t_token_generation / n_decoded;
n_tokens_second = 1e3 / t_token_generation * n_decoded;
sprintf(buffer, "generation eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)",
t_token_generation, n_decoded,
t_token, n_tokens_second);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_token_generation", t_token_generation},
{"n_decoded", n_decoded},
{"t_token", t_token},
{"n_tokens_second", n_tokens_second},
});
sprintf(buffer, " total time = %10.2f ms", t_prompt_processing + t_token_generation);
LOG_DEBUG(buffer, {
{"slot_id", id},
{"task_id", task_id},
{"t_prompt_processing", t_prompt_processing},
{"t_token_generation", t_token_generation},
{"t_total", t_prompt_processing + t_token_generation},
});
}
};
struct server_metrics {
uint64_t n_prompt_tokens_processed_total = 0;
uint64_t n_tokens_predicted_total = 0;
uint64_t n_prompt_tokens_processed = 0;
uint64_t t_prompt_processing = 0;
uint64_t n_tokens_predicted = 0;
uint64_t t_tokens_generation = 0;
void on_prompt_eval(const server_slot &slot) {
n_prompt_tokens_processed_total += slot.n_prompt_tokens_processed;
n_prompt_tokens_processed += slot.n_prompt_tokens_processed;
t_prompt_processing += slot.t_prompt_processing;
}
void on_prediction(const server_slot &slot) {
n_tokens_predicted_total += slot.n_decoded;
n_tokens_predicted += slot.n_decoded;
t_tokens_generation += slot.t_token_generation;
}
void reset_bucket() {
n_prompt_tokens_processed = 0;
t_prompt_processing = 0;
n_tokens_predicted = 0;
t_tokens_generation = 0;
}
};
struct llama_server_context
{
llama_model *model = nullptr;
float modelProgress = 0.0;
llama_context *ctx = nullptr;
clip_ctx *clp_ctx = nullptr;
gpt_params params;
llama_batch batch;
bool multimodal = false;
bool clean_kv_cache = true;
bool all_slots_are_idle = false;
bool add_bos_token = true;
int32_t n_ctx; // total context for all clients / slots
// system prompt
bool system_need_update = false;
std::string system_prompt;
std::vector<llama_token> system_tokens;
std::string name_user; // this should be the antiprompt
std::string name_assistant;
// slots / clients
std::vector<server_slot> slots;
json default_generation_settings_for_props;
llama_server_queue queue_tasks;
llama_server_response queue_results;
server_metrics metrics;
~llama_server_context()
{
if (clp_ctx)
{
LOG_DEBUG("freeing clip model", {});
clip_free(clp_ctx);
clp_ctx = nullptr;
}
if (ctx)
{
llama_free(ctx);
ctx = nullptr;
}
if (model)
{
llama_free_model(model);
model = nullptr;
}
}
bool load_model(const gpt_params &params_)
{
params = params_;
if (!params.mmproj.empty()) {
multimodal = true;
LOG_DEBUG("Multi Modal Mode Enabled", {});
clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
if(clp_ctx == nullptr) {
LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
return false;
}
if (params.n_ctx < 2048) { // request larger context for the image embedding
params.n_ctx = 2048;
}
}
std::tie(model, ctx) = llama_init_from_gpt_params(params);
if (model == nullptr)
{
LOG_ERROR("unable to load model", {{"model", params.model}});
return false;
}
if (multimodal) {
const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
const int n_embd_llm = llama_n_embd(model);
if (n_embd_clip != n_embd_llm) {
LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
llama_free(ctx);
llama_free_model(model);
return false;
}
}
n_ctx = llama_n_ctx(ctx);
add_bos_token = llama_should_add_bos_token(model);
return true;
}
void validate_model_chat_template(server_params & sparams) {
llama_chat_message chat[] = {{"user", "test"}};
std::vector<char> buf(1);
int res = llama_chat_apply_template(model, nullptr, chat, 1, true, buf.data(), buf.size());
if (res < 0) {
LOG_ERROR("The chat template comes with this model is not yet supported, falling back to chatml. This may cause the model to output suboptimal responses", {});
sparams.chat_template = "chatml";
}
}
void initialize() {
// create slots
all_slots_are_idle = true;
const int32_t n_ctx_slot = n_ctx / params.n_parallel;
LOG_DEBUG("initializing slots", {{"n_slots", params.n_parallel}});
for (int i = 0; i < params.n_parallel; i++)
{
server_slot slot;
slot.id = i;
slot.n_ctx = n_ctx_slot;
slot.n_predict = params.n_predict;
LOG_DEBUG("new slot", {
{"slot_id", slot.id},
{"n_ctx_slot", slot.n_ctx}
});
const int ga_n = params.grp_attn_n;
const int ga_w = params.grp_attn_w;
if (ga_n != 1) {
GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
LOG_DEBUG("slot self-extend", {
{"slot_id", slot.id},
{"ga_n", ga_n},
{"ga_w", ga_w}
});
}
slot.ga_i = 0;
slot.ga_n = ga_n;
slot.ga_w = ga_w;
slot.reset();
slots.push_back(slot);
}
default_generation_settings_for_props = get_formated_generation(slots.front());
default_generation_settings_for_props["seed"] = -1;
batch = llama_batch_init(n_ctx, 0, params.n_parallel);
}
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
// TODO: currently, we tokenize using special tokens by default
// this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
// but it's better compared to completely ignoring ChatML and other chat templates
const bool TMP_FORCE_SPECIAL = true;
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
std::vector<llama_token> prompt_tokens;
if (json_prompt.is_array())
{
bool first = true;
for (const auto& p : json_prompt)
{
if (p.is_string())
{
auto s = p.template get<std::string>();
std::vector<llama_token> p;
if (first)
{
p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
first = false;
}
else
{
p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
}
prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
}
else
{
if (first)
{
first = false;
}
prompt_tokens.push_back(p.template get<llama_token>());
}
}
}
else
{
auto s = json_prompt.template get<std::string>();
prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
}
return prompt_tokens;
}
server_slot* get_slot(int id) {
int64_t t_last = ggml_time_us();
server_slot *last_used = nullptr;
for (server_slot & slot : slots)
{
if (slot.id == id && slot.available())
{
return &slot;
}
if (slot.available() && slot.t_last_used < t_last)
{
last_used = &slot;
t_last = slot.t_last_used;
}
}
return last_used;
}
bool launch_slot_with_data(server_slot* &slot, json data) {
slot_params default_params;
llama_sampling_params default_sparams;
slot->params.stream = json_value(data, "stream", false);
slot->params.cache_prompt = json_value(data, "cache_prompt", false);
slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
slot->params.seed = json_value(data, "seed", default_params.seed);
slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
slot->sparams.min_keep = json_value(data, "min_keep", default_sparams.min_keep);
if (slot->n_predict > 0 && slot->params.n_predict > slot->n_predict) {
// Might be better to reject the request with a 400 ?
LOG_WARNING("Max tokens to predict exceeds server configuration", {
{"params.n_predict", slot->params.n_predict},
{"slot.n_predict", slot->n_predict},
});
slot->params.n_predict = slot->n_predict;
}
if (data.count("input_suffix") != 0)
{
slot->params.input_suffix = data["input_suffix"];
}
else
{
slot->params.input_suffix = "";
}
if (data.count("prompt") != 0)
{
slot->prompt = data["prompt"];
}
else
{
slot->prompt = "";
}
slot->sparams.penalty_prompt_tokens.clear();
slot->sparams.use_penalty_prompt_tokens = false;
const auto &penalty_prompt = data.find("penalty_prompt");
if (penalty_prompt != data.end())
{
if (penalty_prompt->is_string())
{
const auto penalty_prompt_string = penalty_prompt->get<std::string>();
auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
if (slot->params.n_predict > 0)
{
slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
}
slot->sparams.use_penalty_prompt_tokens = true;
}
else if (penalty_prompt->is_array())
{
const auto n_tokens = penalty_prompt->size();
slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
const int n_vocab = llama_n_vocab(model);
for (const auto &penalty_token : *penalty_prompt)
{
if (penalty_token.is_number_integer())
{
const auto tok = penalty_token.get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.penalty_prompt_tokens.push_back(tok);
}
}
}
slot->sparams.use_penalty_prompt_tokens = true;
}
}
slot->sparams.logit_bias.clear();
if (json_value(data, "ignore_eos", false))
{
slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
}
const auto &logit_bias = data.find("logit_bias");
if (logit_bias != data.end() && logit_bias->is_array())
{
const int n_vocab = llama_n_vocab(model);
for (const auto &el : *logit_bias)
{
if (el.is_array() && el.size() == 2)
{
float bias;
if (el[1].is_number())
{
bias = el[1].get<float>();
}
else if (el[1].is_boolean() && !el[1].get<bool>())
{
bias = -INFINITY;
}
else
{
continue;
}
if (el[0].is_number_integer())
{
llama_token tok = el[0].get<llama_token>();
if (tok >= 0 && tok < n_vocab)
{
slot->sparams.logit_bias[tok] = bias;
}
}
else if (el[0].is_string())
{
auto toks = llama_tokenize(model, el[0].get<std::string>(), false);
for (auto tok : toks)
{
slot->sparams.logit_bias[tok] = bias;
}
}
}
}
}
slot->params.antiprompt.clear();
const auto &stop = data.find("stop");
if (stop != data.end() && stop->is_array())
{
for (const auto &word : *stop)
{
if (!word.empty())
{
slot->params.antiprompt.push_back(word);
}
}
}
const auto &samplers_sequence = data.find("samplers");
if (samplers_sequence != data.end() && samplers_sequence->is_array())
{
std::vector<std::string> sampler_names;
for (const auto &sampler_name : *samplers_sequence)
{
if (sampler_name.is_string())
{
sampler_names.emplace_back(sampler_name);
}
}
slot->sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
}
else
{
slot->sparams.samplers_sequence = default_sparams.samplers_sequence;
}
if (multimodal)
{
const auto &images_data = data.find("image_data");
if (images_data != data.end() && images_data->is_array())
{
for (const auto &img : *images_data)
{
const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
slot_image img_sl;
img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
img_sl.img_data = clip_image_u8_init();
if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
{
LOG_ERROR("failed to load image", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
return false;
}
LOG_VERBOSE("image loaded", {
{"slot_id", slot->id},
{"img_sl_id", img_sl.id}
});
img_sl.request_encode_image = true;
slot->images.push_back(img_sl);
}
// process prompt
// example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
if (slot->images.size() > 0 && !slot->prompt.is_array())
{
std::string prompt = slot->prompt.get<std::string>();
size_t pos = 0, begin_prefix = 0;
std::string pattern = "[img-";
while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
size_t end_prefix = pos;
pos += pattern.length();
size_t end_pos = prompt.find(']', pos);
if (end_pos != std::string::npos)
{
std::string image_id = prompt.substr(pos, end_pos - pos);
try
{
int img_id = std::stoi(image_id);
bool found = false;
for (slot_image &img : slot->images)
{
if (img.id == img_id) {
found = true;
img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
begin_prefix = end_pos + 1;
break;
}
}
if (!found) {
LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
slot->images.clear();
return false;
}
} catch (const std::invalid_argument& e) {
LOG_TEE("Invalid image number id in prompt\n");
slot->images.clear();
return false;
}
}
}
slot->prompt = "";
slot->params.input_suffix = prompt.substr(begin_prefix);
slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
}
}
}
if (slot->ctx_sampling != nullptr)
{
llama_sampling_free(slot->ctx_sampling);
}
slot->ctx_sampling = llama_sampling_init(slot->sparams);
llama_set_rng_seed(ctx, slot->params.seed);
slot->command = LOAD_PROMPT;
all_slots_are_idle = false;
LOG_DEBUG("slot is processing task", {
{"slot_id", slot->id},
{"task_id", slot->task_id},
});
return true;
}
void kv_cache_clear() {
// clear the entire KV cache
llama_kv_cache_clear(ctx);
clean_kv_cache = false;
}
void system_prompt_update() {
kv_cache_clear();
system_tokens.clear();
if (!system_prompt.empty()) {
system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
llama_batch_clear(batch);
for (int i = 0; i < (int)system_tokens.size(); ++i)
{
llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += params.n_batch)
{
const int32_t n_tokens = std::min(params.n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view) != 0)
{
LOG_TEE("%s: llama_decode() failed\n", __func__);
return;
}
}
// assign the system KV cache to all parallel sequences
for (int32_t i = 1; i < params.n_parallel; ++i)
{
llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
}
}
LOG_TEE("system prompt updated\n");
system_need_update = false;
}
void system_prompt_notify() {
// release all slots
for (server_slot &slot : slots)
{
slot.release();
}
system_need_update = true;
}
static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
const stop_type type, server_slot &slot)
{
size_t stop_pos = std::string::npos;
for (const std::string &word : slot.params.antiprompt)
{
size_t pos;
if (type == STOP_FULL)
{
const size_t tmp = word.size() + last_token_size;
const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
pos = text.find(word, from_pos);
}
else
{
pos = find_partial_stop_string(word, text);
}
if (pos != std::string::npos &&
(stop_pos == std::string::npos || pos < stop_pos))
{
if (type == STOP_FULL)
{
slot.stopped_word = true;
slot.stopping_word = word;
slot.has_next_token = false;
}
stop_pos = pos;
}
}
return stop_pos;
}
bool process_token(completion_token_output &result, server_slot &slot) {
// remember which tokens were sampled - used for repetition penalties during sampling
const std::string token_str = llama_token_to_piece(ctx, result.tok);
slot.sampled = result.tok;
// search stop word and delete it
slot.generated_text += token_str;
slot.has_next_token = true;
if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
{
// we can change penalty_prompt_tokens because it is always created from scratch each request
slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
}
// check if there is incomplete UTF-8 character at the end
bool incomplete = false;
for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
{
unsigned char c = slot.generated_text[slot.generated_text.size() - i];
if ((c & 0xC0) == 0x80)
{
// continuation byte: 10xxxxxx
continue;
}
if ((c & 0xE0) == 0xC0)
{
// 2-byte character: 110xxxxx ...
incomplete = i < 2;
}
else if ((c & 0xF0) == 0xE0)
{
// 3-byte character: 1110xxxx ...
incomplete = i < 3;
}
else if ((c & 0xF8) == 0xF0)
{
// 4-byte character: 11110xxx ...
incomplete = i < 4;
}
// else 1-byte character or invalid byte
break;
}
if (!incomplete)
{
size_t pos = std::min(slot.n_sent_text, slot.generated_text.size());
const std::string str_test = slot.generated_text.substr(pos);
bool is_stop_full = false;
size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
if (stop_pos != std::string::npos)
{
is_stop_full = true;
slot.generated_text.erase(
slot.generated_text.begin() + pos + stop_pos,
slot.generated_text.end());
pos = std::min(slot.n_sent_text, slot.generated_text.size());
}
else
{
is_stop_full = false;
stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
}
// check if there is any token to predict
if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
{
// no send the stop word in the response
result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
slot.n_sent_text += result.text_to_send.size();
// add the token to slot queue and cache
}
if (slot.params.stream)
{
send_partial_response(slot, result);
}
}
slot.add_token_string(result);
if (incomplete)
{
slot.has_next_token = true;
}
// check the limits
if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
{
slot.stopped_limit = true;
slot.has_next_token = false;
}
if (!slot.cache_tokens.empty() && llama_token_is_eog(model, result.tok))
{
slot.stopped_eos = true;
slot.has_next_token = false;
LOG_VERBOSE("eos token found", {});
}
LOG_VERBOSE("next token", {
{"token", result.tok},
{"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"num_tokens_predicted", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
});
return slot.has_next_token; // continue
}
bool process_images(server_slot &slot) const
{
for (slot_image &img : slot.images)
{
if (!img.request_encode_image)
{
continue;
}
if (!llava_image_embed_make_with_clip_img(clp_ctx, params.n_threads, img.img_data, &img.image_embedding, &img.image_tokens)) {
LOG_TEE("Error processing the given image");
return false;
}
img.request_encode_image = false;
}
return slot.images.size() > 0;
}
void send_error(task_server& task, const std::string &error)
{
LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = false;
res.error = true;
res.result_json = { { "content", error } };
queue_results.send(res);
}
json get_formated_generation(server_slot &slot)
{
const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
eos_bias->second < 0.0f && std::isinf(eos_bias->second);
std::vector<std::string> samplers_sequence;
for (const auto &sampler_type : slot.sparams.samplers_sequence)
{
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
}
return json {
{"n_ctx", slot.n_ctx},
{"n_predict", slot.n_predict},
{"model", params.model_alias},
{"seed", slot.params.seed},
{"temperature", slot.sparams.temp},
{"dynatemp_range", slot.sparams.dynatemp_range},
{"dynatemp_exponent", slot.sparams.dynatemp_exponent},
{"top_k", slot.sparams.top_k},
{"top_p", slot.sparams.top_p},
{"min_p", slot.sparams.min_p},
{"tfs_z", slot.sparams.tfs_z},
{"typical_p", slot.sparams.typical_p},
{"repeat_last_n", slot.sparams.penalty_last_n},
{"repeat_penalty", slot.sparams.penalty_repeat},
{"presence_penalty", slot.sparams.penalty_present},
{"frequency_penalty", slot.sparams.penalty_freq},
{"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
{"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
{"mirostat", slot.sparams.mirostat},
{"mirostat_tau", slot.sparams.mirostat_tau},
{"mirostat_eta", slot.sparams.mirostat_eta},
{"penalize_nl", slot.sparams.penalize_nl},
{"stop", slot.params.antiprompt},
{"n_predict", slot.params.n_predict},
{"n_keep", params.n_keep},
{"ignore_eos", ignore_eos},
{"stream", slot.params.stream},
{"logit_bias", slot.sparams.logit_bias},
{"n_probs", slot.sparams.n_probs},
{"min_keep", slot.sparams.min_keep},
{"grammar", slot.sparams.grammar},
{"samplers", samplers_sequence}
};
}
void send_partial_response(server_slot &slot, completion_token_output tkn)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = false;
res.result_json = json
{
{"stop", false},
{"slot_id", slot.id},
{"multimodal", multimodal}
};
if (!llama_token_is_eog(model, tkn.tok)) {
res.result_json["content"] = tkn.text_to_send;
}
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs_output = {};
const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
size_t probs_pos = std::min(slot.n_sent_token_probs, slot.generated_token_probs.size());
size_t probs_stop_pos = std::min(slot.n_sent_token_probs + to_send_toks.size(), slot.generated_token_probs.size());
if (probs_pos < probs_stop_pos)
{
probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
}
slot.n_sent_token_probs = probs_stop_pos;
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
}
queue_results.send(res);
}
void send_final_response(server_slot &slot)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
res.result_json = json
{
{"content", !slot.params.stream ? slot.generated_text : ""},
{"slot_id", slot.id},
{"stop", true},
{"model", params.model_alias},
{"tokens_predicted", slot.n_decoded},
{"tokens_evaluated", slot.n_prompt_tokens},
{"truncated", slot.truncated},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
{"tokens_cached", slot.n_past},
{"timings", slot.get_formated_timings()}
};
if (slot.sparams.n_probs > 0)
{
std::vector<completion_token_output> probs = {};
if (!slot.params.stream && slot.stopped_word)
{
const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
}
else
{
probs = std::vector<completion_token_output>(
slot.generated_token_probs.begin(),
slot.generated_token_probs.end());
}
res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
}
queue_results.send(res);
}
void send_embedding(server_slot & slot, const llama_batch & batch)
{
task_result res;
res.id = slot.task_id;
res.multitask_id = slot.multitask_id;
res.error = false;
res.stop = true;
const int n_embd = llama_n_embd(model);
if (!params.embedding)
{
LOG_WARNING("embedding disabled", {{"params.embedding", params.embedding}});
res.result_json = json
{
{"embedding", std::vector<float>(n_embd, 0.0f)},
};
}
else
{
for (int i = 0; i < batch.n_tokens; ++i) {
if (!batch.logits[i] || batch.seq_id[i][0] != slot.id) {
continue;
}
const float * embd = llama_get_embeddings_seq(ctx, batch.seq_id[i][0]);
if (embd == NULL) {
embd = llama_get_embeddings_ith(ctx, i);
if (embd == NULL) {
LOG_ERROR("failed to get embeddings for token", {{"token", batch.token[i]}, {"seq_id", batch.seq_id[i][0]}});
res.result_json = json
{
{"embedding", std::vector<float>(n_embd, 0.0f)},
};
continue;
}
}
res.result_json = json
{
{"embedding", std::vector<float>(embd, embd + n_embd)},
};
}
}
queue_results.send(res);
}
void request_completion(int task_id, json data, bool embedding, int multitask_id)
{
task_server task;
task.id = task_id;
task.target_id = 0;
task.data = std::move(data);
task.embedding_mode = embedding;
task.type = TASK_TYPE_COMPLETION;
task.multitask_id = multitask_id;
// when a completion task's prompt array is not a singleton, we split it into multiple requests
// otherwise, it's a single-prompt task, we actually queue it
// if there's numbers in the prompt array it will be treated as an array of tokens
if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
bool numbers = false;
for (const auto& e : task.data.at("prompt")) {
if (e.is_number()) {
numbers = true;
break;
}
}
// NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
// it will completely stall the server. I don't know where the bug for this is.
//
// if there are numbers, it needs to be treated like a single prompt,
// queue_tasks handles a mix of strings and numbers just fine.
if (numbers) {
queue_tasks.post(task);
} else {
split_multiprompt_task(task_id, task);
}
} else {
// an empty prompt can make slot become buggy
if (task.data.contains("prompt") && task.data["prompt"].is_string() && task.data["prompt"].get<std::string>().empty()) {
task.data["prompt"] = " "; // add a space so that we have one token
}
queue_tasks.post(task);
}
}
// for multiple images processing
bool ingest_images(server_slot &slot, int n_batch)
{
int image_idx = 0;
while (image_idx < (int) slot.images.size())
{
slot_image &img = slot.images[image_idx];
// process prefix prompt
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{
const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
llama_batch batch_view = {
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
if (llama_decode(ctx, batch_view))
{
LOG_TEE("%s : failed to eval\n", __func__);
return false;
}
}
// process image with llm
for (int i = 0; i < img.image_tokens; i += n_batch)
{
int n_eval = img.image_tokens - i;
if (n_eval > n_batch)
{
n_eval = n_batch;
}
const int n_embd = llama_n_embd(model);
llama_batch batch_img = {
n_eval,
nullptr,
(img.image_embedding + i * n_embd),
nullptr,
nullptr,
nullptr,
nullptr,
slot.n_past,
1, 0
};
if (llama_decode(ctx, batch_img))
{
LOG_TEE("%s : failed to eval image\n", __func__);
return false;
}
slot.n_past += n_eval;
}
image_idx++;
llama_batch_clear(batch);
// append prefix of next image
const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
slot.params.input_suffix : // no more images, then process suffix prompt
(json)(slot.images[image_idx].prefix_prompt);
std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
for (int i = 0; i < (int) append_tokens.size(); ++i)
{
llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
slot.n_past += 1;
}
}
return true;
}
void request_cancel(int task_id)
{
task_server task;
task.type = TASK_TYPE_CANCEL;
task.target_id = task_id;
queue_tasks.post(task);
}
void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
{
int prompt_count = multiprompt_task.data.at("prompt").size();
if (prompt_count <= 1) {
send_error(multiprompt_task, "error while handling multiple prompts");
return;
}
// generate all the ID for subtask
std::vector<int> subtask_ids(prompt_count);
for (int i = 0; i < prompt_count; i++)
{
subtask_ids[i] = queue_tasks.get_new_id();
}
// queue up the multitask so we can track its subtask progression
queue_tasks.add_multitask(multitask_id, subtask_ids);
// add subtasks
for (int i = 0; i < prompt_count; i++)
{
json subtask_data = multiprompt_task.data;
subtask_data["prompt"] = subtask_data["prompt"][i];
// subtasks inherit everything else (embedding mode, etc.)
request_completion(subtask_ids[i], subtask_data, multiprompt_task.embedding_mode, multitask_id);
}
}
void process_single_task(task_server& task)
{
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
server_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later
LOG_VERBOSE("no slot is available", {{"task_id", task.id}});
queue_tasks.defer(task);
break;
}
slot->reset();
slot->embedding = task.embedding_mode;
slot->task_id = task.id;
slot->multitask_id = task.multitask_id;
if (!launch_slot_with_data(slot, task.data))
{
// send error result
send_error(task, "internal_error");
break;
}
} break;
case TASK_TYPE_CANCEL: { // release slot linked with the task id
for (auto & slot : slots)
{
if (slot.task_id == task.target_id)
{
slot.release();
break;
}
}
} break;
case TASK_TYPE_NEXT_RESPONSE: {
// do nothing
} break;
case TASK_TYPE_METRICS: {
json slots_data = json::array();
int n_idle_slots = 0;
int n_processing_slots = 0;
for (server_slot &slot: slots) {
json slot_data = get_formated_generation(slot);
slot_data["id"] = slot.id;
slot_data["task_id"] = slot.task_id;
slot_data["state"] = slot.state;
slot_data["prompt"] = slot.prompt;
slot_data["next_token"] = {
{"has_next_token", slot.has_next_token},
{"n_remain", slot.n_remaining},
{"num_tokens_predicted", slot.n_decoded},
{"stopped_eos", slot.stopped_eos},
{"stopped_word", slot.stopped_word},
{"stopped_limit", slot.stopped_limit},
{"stopping_word", slot.stopping_word},
};
if (slot_data["state"] == IDLE) {
n_idle_slots++;
} else {
n_processing_slots++;
}
slots_data.push_back(slot_data);
}
LOG_DEBUG("slot data", {
{"task_id", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots}
});
LOG_VERBOSE("slot data", {
{"task_id", task.id},
{"n_idle_slots", n_idle_slots},
{"n_processing_slots", n_processing_slots},
{"slots", slots_data}
});
task_result res;
res.id = task.id;
res.multitask_id = task.multitask_id;
res.stop = true;
res.error = false;
res.result_json = {
{ "idle", n_idle_slots },
{ "processing", n_processing_slots },
{ "deferred", queue_tasks.queue_tasks_deferred.size() },
{ "n_prompt_tokens_processed_total", metrics.n_prompt_tokens_processed_total},
{ "n_tokens_predicted_total", metrics.n_tokens_predicted_total},
{ "n_prompt_tokens_processed", metrics.n_prompt_tokens_processed},
{ "t_prompt_processing", metrics.t_prompt_processing},
{ "n_tokens_predicted", metrics.n_tokens_predicted},
{ "t_tokens_generation", metrics.t_tokens_generation},
{ "kv_cache_tokens_count", llama_get_kv_cache_token_count(ctx)},
{ "kv_cache_used_cells", llama_get_kv_cache_used_cells(ctx)},
{ "slots", slots_data },
};
metrics.reset_bucket();
queue_results.send(res);
} break;
}
}
void on_finish_multitask(task_multi& multitask)
{
// all subtasks done == multitask is done
task_result result;
result.id = multitask.id;
result.stop = true;
result.error = false;
// collect json results into one json result
std::vector<json> result_jsons;
for (auto& subres : multitask.results)
{
result_jsons.push_back(subres.result_json);
result.error = result.error && subres.error;
}
result.result_json = json{ { "results", result_jsons } };
queue_results.send(result);
}
bool update_slots() {
if (system_need_update)
{
LOG_DEBUG("updating system prompt", {});
system_prompt_update();
}
llama_batch_clear(batch);
if (all_slots_are_idle)
{
if (system_prompt.empty() && clean_kv_cache)
{
LOG_DEBUG("all slots are idle and system prompt is empty, clear the KV cache", {});
kv_cache_clear();
}
return true;
}
LOG_VERBOSE("posting NEXT_RESPONSE", {});
task_server task;
task.type = TASK_TYPE_NEXT_RESPONSE;
task.target_id = -1;
queue_tasks.post(task);
for (server_slot &slot : slots)
{
if (slot.ga_n == 1)
{
if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
{
// Shift context
const int n_keep = slot.params.n_keep + add_bos_token;
const int n_left = (int) system_tokens.size() + slot.n_past - n_keep;
const int n_discard = n_left / 2;
LOG_DEBUG("slot context shift", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_keep", n_keep},
{"n_left", n_left},
{"n_discard", n_discard},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()}
});
llama_kv_cache_seq_rm (ctx, slot.id, n_keep , n_keep + n_discard);
llama_kv_cache_seq_add(ctx, slot.id, n_keep + n_discard, system_tokens.size() + slot.n_past, -n_discard);
for (size_t i = n_keep + n_discard; i < slot.cache_tokens.size(); i++)
{
slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
}
slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
slot.n_past -= n_discard;
slot.truncated = true;
}
}
}
// decode any currently ongoing sequences
LOG_VERBOSE("decoding ongoing sequences", {});
for (auto & slot : slots)
{
// release the slot
if (slot.command == RELEASE)
{
slot.state = IDLE;
slot.command = NONE;
slot.t_last_used = ggml_time_us();
LOG_DEBUG("slot released", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
{"n_ctx", n_ctx},
{"n_past", slot.n_past},
{"n_system_tokens", system_tokens.size()},
{"n_cache_tokens", slot.cache_tokens.size()},
{"truncated", slot.truncated}
});
queue_tasks.notify_slot_changed();
continue;
}
if (slot.state == IDLE)
{
continue;
}
slot.i_batch = batch.n_tokens;
const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
// TODO: we always have to take into account the "system_tokens"
// this is not great and needs to be improved somehow
llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
slot.n_past += 1;
}
// process in chunks of params.n_batch
int32_t n_batch = params.n_batch;
// assign workload to the slots
if (params.cont_batching || batch.n_tokens == 0)
{
for (auto & slot : slots)
{
const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
// empty prompt passed -> release the slot and send empty response
if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt)
{
slot.release();
slot.print_timings();
send_final_response(slot);
continue;
}
// need process the prompt
if (slot.state == IDLE && slot.command == LOAD_PROMPT)
{
slot.state = PROCESSING;
slot.command = NONE;
std::vector<llama_token> prompt_tokens;
slot.t_start_process_prompt = ggml_time_us();
slot.t_start_genereration = 0;
prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
slot.n_prompt_tokens = prompt_tokens.size();
if (slot.params.n_keep < 0)
{
slot.params.n_keep = slot.n_prompt_tokens;
}
slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
// if input prompt is too big, truncate it, if group attention self-extend is disabled
if (slot.ga_n == 1 && slot.n_prompt_tokens >= slot.n_ctx)
{
const int n_left = slot.n_ctx - slot.params.n_keep;
const int n_block_size = n_left / 2;
const int erased_blocks = (slot.n_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
std::vector<llama_token> new_tokens(
prompt_tokens.begin(),
prompt_tokens.begin() + slot.params.n_keep);
new_tokens.insert(
new_tokens.end(),
prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size,
prompt_tokens.end());
LOG_VERBOSE("input truncated", {
{"n_ctx", slot.n_ctx},
{"n_keep", slot.params.n_keep},
{"n_left", n_left},
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
});
slot.truncated = true;
prompt_tokens = new_tokens;
slot.n_prompt_tokens = prompt_tokens.size();
GGML_ASSERT(slot.n_prompt_tokens < slot.n_ctx);
}
if (!slot.params.cache_prompt)
{
llama_sampling_reset(slot.ctx_sampling);
slot.n_past = 0;
slot.n_past_se = 0;
slot.ga_i = 0;
slot.n_prompt_tokens_processed = slot.n_prompt_tokens;
}
else
{
// push the prompt into the sampling context (do not apply grammar)
for (auto &token : prompt_tokens)
{
llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
}
slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
// the last token of the cache is not in the KV cache until the next call to llama_decode
// (it was sampled, pushed into the "cache_tokens", but not yet put in the context)
if (slot.n_past > 0 && slot.n_past == (int32_t) slot.cache_tokens.size())
{
slot.n_past -= 1;
}
slot.n_prompt_tokens_processed = slot.n_prompt_tokens - slot.n_past;
if (slot.ga_n != 1)
{
int ga_i = 0;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
int32_t slot_npast = 0;
for (int k = 0; k < slot.n_past; ++k)
{
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
slot_npast++;
}
slot.n_past_se = slot_npast;
slot.ga_i = ga_i;
}
LOG_DEBUG("slot progression", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "n_past", slot.n_past },
{ "n_past_se", slot.n_past_se },
{ "ga_i", slot.ga_i },
{ "n_prompt_tokens_processed", slot.n_prompt_tokens_processed }
});
}
slot.cache_tokens = prompt_tokens;
if (slot.n_past == slot.n_prompt_tokens && slot.n_past > 0)
{
// we have to evaluate at least 1 token to generate logits.
LOG_DEBUG("we have to evaluate at least 1 token to generate logits", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id }
});
slot.n_past--;
if (slot.ga_i > 0)
{
slot.n_past_se--;
}
}
int p0 = (int) system_tokens.size() + slot.n_past;
LOG_DEBUG("kv cache rm [p0, end)", {
{ "slot_id", slot.id },
{ "task_id", slot.task_id },
{ "p0", p0 }
});
llama_kv_cache_seq_rm(ctx, slot.id, p0, -1);
LOG_VERBOSE("prompt ingested", {
{"n_past", slot.n_past},
{"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
{"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
});
const bool has_images = process_images(slot);
// process the prefix of first image
std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
int32_t ga_i = slot.ga_i;
int32_t ga_n = slot.ga_n;
int32_t ga_w = slot.ga_w;
for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
{
if (slot.ga_n != 1)
{
while (slot_npast >= ga_i + ga_w) {
const int bd = (ga_w/ga_n)*(ga_n - 1);
slot_npast -= bd;
ga_i += ga_w/ga_n;
}
}
llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, { slot.id }, false);
slot_npast++;
}
if (has_images && !ingest_images(slot, n_batch))
{
LOG_ERROR("failed processing images", {
{"slot_id", slot.id},
{"task_id", slot.task_id},
});
// FIXME @phymbert: to be properly tested
// early returning without changing the slot state will block the slot for ever
// no one at the moment is checking the return value
return false;
}
// extract the logits only for the last token
if (batch.n_tokens > 0)
{
batch.logits[batch.n_tokens - 1] = true;
}
slot.n_decoded = 0;
slot.i_batch = batch.n_tokens - 1;
}
}
}
if (batch.n_tokens == 0)
{
all_slots_are_idle = true;
return true;
}
for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
{
const int32_t n_tokens = std::min(n_batch, batch.n_tokens - i);
for (auto & slot : slots)
{
if (slot.ga_n != 1)
{
// context extension via Self-Extend
while (slot.n_past_se >= slot.ga_i + slot.ga_w)
{
const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
LOG_TEE("\n");
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
llama_kv_cache_seq_add(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
slot.n_past_se -= bd;
slot.ga_i += slot.ga_w / slot.ga_n;
LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
}
slot.n_past_se += n_tokens;
}
}
llama_batch batch_view =
{
n_tokens,
batch.token + i,
nullptr,
batch.pos + i,
batch.n_seq_id + i,
batch.seq_id + i,
batch.logits + i,
0, 0, 0, // unused
};
const int ret = llama_decode(ctx, batch_view);
if (ret != 0)
{
if (n_batch == 1 || ret < 0)
{
// if you get here, it means the KV cache is full - try increasing it via the context size
LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
return false;
}
LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
// retry with half the batch size to try to find a free slot in the KV cache
n_batch /= 2;
i -= n_batch;
continue;
}
for (auto & slot : slots)
{
if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
{
continue;
}
// prompt evaluated for embedding
if (slot.embedding)
{
send_embedding(slot, batch_view);
slot.release();
slot.i_batch = -1;
continue;
}
completion_token_output result;
const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
slot.n_decoded += 1;
if (slot.n_decoded == 1)
{
slot.t_start_genereration = ggml_time_us();
slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
metrics.on_prompt_eval(slot);
}
llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
result.tok = id;
const int32_t n_probs = slot.sparams.n_probs;
if (slot.sparams.temp <= 0 && n_probs > 0)
{
// for llama_sample_token_greedy we need to sort candidates
llama_sample_softmax(ctx, &cur_p);
}
for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
{
result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
}
if (!process_token(result, slot))
{
slot.release();
slot.print_timings();
send_final_response(slot);
metrics.on_prediction(slot);
}
slot.i_batch = -1;
}
}
LOG_VERBOSE("slots updated", {});
return true;
}
json model_meta() {
return json{
{"vocab_type", llama_vocab_type(model)},
{"n_vocab", llama_n_vocab(model)},
{"n_ctx_train", llama_n_ctx_train(model)},
{"n_embd", llama_n_embd(model)},
{"n_params", llama_model_n_params(model)},
{"size", llama_model_size(model)},
};
}
};
static void server_print_usage(const char *argv0, const gpt_params &params,
const server_params &sparams)
{
printf("usage: %s [options]\n", argv0);
printf("\n");
printf("options:\n");
printf(" -h, --help show this help message and exit\n");
printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
printf(" --threads-http N number of threads in the http server pool to process requests (default: max(hardware concurrency - 1, --parallel N + 2))\n");
printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
printf(" --rope-scaling {none,linear,yarn}\n");
printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
printf(" --pooling {none,mean,cls}\n");
printf(" pooling type for embeddings, use model default if unspecified\n");
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
if (llama_supports_mlock())
{
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
}
if (llama_supports_mmap())
{
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
}
printf(" --numa TYPE attempt optimizations that help on some NUMA systems\n");
printf(" - distribute: spread execution evenly over all nodes\n");
printf(" - isolate: only spawn threads on CPUs on the node that execution started on\n");
printf(" - numactl: use the CPU map provided my numactl\n");
if (llama_supports_gpu_offload()) {
printf(" -ngl N, --n-gpu-layers N\n");
printf(" number of layers to store in VRAM\n");
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
printf(" how to split the model across multiple GPUs, one of:\n");
printf(" - none: use one GPU only\n");
printf(" - layer (default): split layers and KV across GPUs\n");
printf(" - row: split rows across GPUs\n");
printf(" -ts SPLIT --tensor-split SPLIT\n");
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
printf(" or for intermediate results and KV (with split-mode = row)\n");
}
printf(" -m FNAME, --model FNAME\n");
printf(" model path (default: %s)\n", params.model.c_str());
printf(" -a ALIAS, --alias ALIAS\n");
printf(" set an alias for the model, will be added as `model` field in completion response\n");
printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
printf(" -fa, --flash-attn enable Flash Attention (default: %s)\n", params.flash_attn ? "enabled" : "disabled");
printf(" -spf FNAME, --system-prompt-file FNAME\n");
printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
printf(" -ctk TYPE, --cache-type-k TYPE\n");
printf(" KV cache data type for K (default: f16)\n");
printf(" -ctv TYPE, --cache-type-v TYPE\n");
printf(" KV cache data type for V (default: f16)\n");
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
printf(" --log-format log output format: json or text (default: json)\n");
printf(" --log-disable disables logging to a file.\n");
printf(" --slots-endpoint-disable disables slots monitoring endpoint.\n");
printf(" --metrics enable prometheus compatible metrics endpoint (default: %s).\n", sparams.metrics_endpoint ? "enabled" : "disabled");
printf("\n");
printf(" -n, --n-predict maximum tokens to predict (default: %d)\n", params.n_predict);
printf(" --override-kv KEY=TYPE:VALUE\n");
printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`\n");
printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`\n");
printf(" --chat-template JINJA_TEMPLATE\n");
printf(" set custom jinja chat template (default: template taken from model's metadata)\n");
printf(" Note: only commonly used templates are accepted, since we don't have jinja parser\n");
printf("\n");
}
static void server_params_parse(int argc, char **argv, server_params &sparams, gpt_params &params)
{
gpt_params default_params;
server_params default_sparams;
std::string arg;
bool invalid_param = false;
for (int i = 1; i < argc; i++)
{
arg = argv[i];
if (arg == "--port")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.port = std::stoi(argv[i]);
}
else if (arg == "--host")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.hostname = argv[i];
}
else if (arg == "--path")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.public_path = argv[i];
}
else if (arg == "--api-key")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.api_keys.emplace_back(argv[i]);
}
else if (arg == "--api-key-file")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
std::ifstream key_file(argv[i]);
if (!key_file) {
fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
invalid_param = true;
break;
}
std::string key;
while (std::getline(key_file, key)) {
if (key.size() > 0) {
sparams.api_keys.push_back(key);
}
}
key_file.close();
}
else if (arg == "--timeout" || arg == "-to")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.read_timeout = std::stoi(argv[i]);
sparams.write_timeout = std::stoi(argv[i]);
}
else if (arg == "-m" || arg == "--model")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model = argv[i];
}
else if (arg == "-a" || arg == "--alias")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.model_alias = argv[i];
}
else if (arg == "-h" || arg == "--help")
{
server_print_usage(argv[0], default_params, default_sparams);
exit(0);
}
else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_ctx = std::stoi(argv[i]);
}
else if (arg == "--rope-scaling")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_NONE; }
else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_LINEAR; }
else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_TYPE_YARN; }
else { invalid_param = true; break; }
}
else if (arg == "--rope-freq-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rope_freq_base = std::stof(argv[i]);
}
else if (arg == "--rope-freq-scale")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.rope_freq_scale = std::stof(argv[i]);
}
else if (arg == "--yarn-ext-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_ext_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-attn-factor")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_attn_factor = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-fast")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_fast = std::stof(argv[i]);
}
else if (arg == "--yarn-beta-slow")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.yarn_beta_slow = std::stof(argv[i]);
}
else if (arg == "--pooling")
{
if (++i >= argc) {
invalid_param = true;
break;
}
std::string value(argv[i]);
/**/ if (value == "none") { params.pooling_type = LLAMA_POOLING_TYPE_NONE; }
else if (value == "mean") { params.pooling_type = LLAMA_POOLING_TYPE_MEAN; }
else if (value == "cls") { params.pooling_type = LLAMA_POOLING_TYPE_CLS; }
else { invalid_param = true; break; }
}
else if (arg == "--threads" || arg == "-t")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads = std::stoi(argv[i]);
}
else if (arg == "--grp-attn-n" || arg == "-gan")
{
if (++i >= argc) {
invalid_param = true;
break;
}
params.grp_attn_n = std::stoi(argv[i]);
}
else if (arg == "--grp-attn-w" || arg == "-gaw")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.grp_attn_w = std::stoi(argv[i]);
}
else if (arg == "--threads-batch" || arg == "-tb")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_threads_batch = std::stoi(argv[i]);
}
else if (arg == "--threads-http")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
sparams.n_threads_http = std::stoi(argv[i]);
}
else if (arg == "-b" || arg == "--batch-size")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_batch = std::stoi(argv[i]);
}
else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
if (llama_supports_gpu_offload()) {
params.n_gpu_layers = std::stoi(argv[i]);
} else {
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
"See main README.md for information on enabling GPU BLAS support",
{{"n_gpu_layers", params.n_gpu_layers}});
}
}
else if (arg == "--split-mode" || arg == "-sm")
{
if (++i >= argc) {
invalid_param = true;
break;
}
std::string arg_next = argv[i];
if (arg_next == "none")
{
params.split_mode = LLAMA_SPLIT_MODE_NONE;
}
else if (arg_next == "layer")
{
params.split_mode = LLAMA_SPLIT_MODE_LAYER;
}
else if (arg_next == "row")
{
params.split_mode = LLAMA_SPLIT_MODE_ROW;
}
else {
invalid_param = true;
break;
}
#ifndef GGML_USE_CUBLAS
fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
#endif // GGML_USE_CUBLAS
}
else if (arg == "--tensor-split" || arg == "-ts")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= llama_max_devices());
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
{
if (i_device < split_arg.size())
{
params.tensor_split[i_device] = std::stof(split_arg[i_device]);
}
else
{
params.tensor_split[i_device] = 0.0f;
}
}
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
#endif // GGML_USE_CUBLAS
}
else if (arg == "--main-gpu" || arg == "-mg")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
params.main_gpu = std::stoi(argv[i]);
#else
LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
#endif
}
else if (arg == "--lora")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(argv[i], 1.0f);
params.use_mmap = false;
}
else if (arg == "--lora-scaled")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
const char * lora_adapter = argv[i];
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
params.use_mmap = false;
}
else if (arg == "--lora-base")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.lora_base = argv[i];
}
else if (arg == "-v" || arg == "--verbose")
{
server_verbose = true;
}
else if (arg == "--mlock")
{
params.use_mlock = true;
}
else if (arg == "--no-mmap")
{
params.use_mmap = false;
}
else if (arg == "--numa")
{
if (++i >= argc) {
invalid_param = true;
break;
} else {
std::string value(argv[i]);
/**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
else { invalid_param = true; break; }
}
}
else if (arg == "--embedding")
{
params.embedding = true;
}
else if (arg == "-cb" || arg == "--cont-batching")
{
params.cont_batching = true;
}
else if (arg == "-fa" || arg == "--flash-attn")
{
params.flash_attn = true;
}
else if (arg == "-np" || arg == "--parallel")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_parallel = std::stoi(argv[i]);
}
else if (arg == "-n" || arg == "--n-predict")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.n_predict = std::stoi(argv[i]);
}
else if (arg == "-ctk" || arg == "--cache-type-k") {
params.cache_type_k = argv[++i];
}
else if (arg == "-ctv" || arg == "--cache-type-v") {
params.cache_type_v = argv[++i];
}
else if(arg == "--mmproj")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
params.mmproj = argv[i];
}
else if (arg == "--log-format")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
if (std::strcmp(argv[i], "json") == 0)
{
server_log_json = true;
}
else if (std::strcmp(argv[i], "text") == 0)
{
server_log_json = false;
}
else
{
invalid_param = true;
break;
}
}
else if (arg == "--log-disable")
{
log_set_target(stdout);
LOG_DEBUG("logging to file is disabled.", {});
}
else if (arg == "--slots-endpoint-disable")
{
sparams.slots_endpoint = false;
}
else if (arg == "--metrics")
{
sparams.metrics_endpoint = true;
}
else if (arg == "--chat-template")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
if (!verify_custom_template(argv[i])) {
fprintf(stderr, "error: the supplied chat template is not supported: %s\n", argv[i]);
fprintf(stderr, "note: llama.cpp does not use jinja parser, we only support commonly used templates\n");
invalid_param = true;
break;
}
sparams.chat_template = argv[i];
}
else if (arg == "--override-kv")
{
if (++i >= argc) {
invalid_param = true;
break;
}
char * sep = strchr(argv[i], '=');
if (sep == nullptr || sep - argv[i] >= 128) {
fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
struct llama_model_kv_override kvo;
std::strncpy(kvo.key, argv[i], sep - argv[i]);
kvo.key[sep - argv[i]] = 0;
sep++;
if (strncmp(sep, "int:", 4) == 0) {
sep += 4;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_INT;
kvo.val_i64 = std::atol(sep);
} else if (strncmp(sep, "float:", 6) == 0) {
sep += 6;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_FLOAT;
kvo.val_f64 = std::atof(sep);
} else if (strncmp(sep, "bool:", 5) == 0) {
sep += 5;
kvo.tag = LLAMA_KV_OVERRIDE_TYPE_BOOL;
if (std::strcmp(sep, "true") == 0) {
kvo.val_bool = true;
} else if (std::strcmp(sep, "false") == 0) {
kvo.val_bool = false;
} else {
fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
} else {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
}
params.kv_overrides.push_back(kvo);
}
else
{
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
if (!params.kv_overrides.empty()) {
params.kv_overrides.emplace_back();
params.kv_overrides.back().key[0] = 0;
}
if (invalid_param)
{
fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
server_print_usage(argv[0], default_params, default_sparams);
exit(1);
}
}
/* llama.cpp completion api semantics */
static json format_partial_response(
llama_server_context &llama, server_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
) {
json res = json
{
{"content", content },
{"stop", false},
{"slot_id", slot->id },
{"multimodal", llama.multimodal }
};
if (slot->sparams.n_probs > 0)
{
res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
}
return res;
}
static void log_server_request(const httplib::Request &req, const httplib::Response &res)
{
// skip GH copilot requests when using default port
if (req.path == "/health" || req.path == "/v1/health" || req.path == "/v1/completions")
{
return;
}
LOG_DEBUG("request", {
{"remote_addr", req.remote_addr},
{"remote_port", req.remote_port},
{"status", res.status},
{"method", req.method},
{"path", req.path},
{"params", req.params},
});
LOG_VERBOSE("request", {
{"request", req.body},
{"response", res.body},
});
}
static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, server_slot *slot)
{
auto & gtps = slot->generated_token_probs;
auto translator = token_translator{llama.ctx};
auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
if (slot->generated_text.capacity() < slot->generated_text.size() + len)
{
slot->generated_text.reserve(slot->generated_text.size() + len);
}
for (const completion_token_output & cto : gtps)
{
slot->generated_text += translator(cto);
}
}
std::function<void(int)> shutdown_handler;
std::atomic_flag is_terminating = ATOMIC_FLAG_INIT;
inline void signal_handler(int signal) {
if (is_terminating.test_and_set()) {
// in case it hangs, we can force terminate the server by hitting Ctrl+C twice
// this is for better developer experience, we can remove when the server is stable enough
fprintf(stderr, "Received second interrupt, terminating immediately.\n");
exit(1);
}
shutdown_handler(signal);
}
static bool update_load_progress(float progress, void *data)
{
((llama_server_context*)data)->modelProgress = progress;
return true;
}
#if defined(_WIN32)
char* wchar_to_char(const wchar_t* wstr) {
if (wstr == nullptr) return nullptr;
// Determine the number of bytes needed for the UTF-8 string
int bytes = WideCharToMultiByte(CP_UTF8, 0, wstr, -1, nullptr, 0, nullptr, nullptr);
char* str = new char[bytes];
// Convert the wide-character string to a UTF-8 string
WideCharToMultiByte(CP_UTF8, 0, wstr, -1, str, bytes, nullptr, nullptr);
return str;
}
int wmain(int argc, wchar_t **wargv) {
char** argv = new char*[argc];
for (int i = 0; i < argc; ++i) {
argv[i] = wchar_to_char(wargv[i]);
}
#else
int main(int argc, char **argv) {
#endif
#if SERVER_VERBOSE != 1
log_disable();
#endif
// own arguments required by this example
gpt_params params;
server_params sparams;
// struct that contains llama context and inference
llama_server_context llama;
server_params_parse(argc, argv, sparams, params);
if (params.model_alias == "unknown")
{
params.model_alias = params.model;
}
llama_backend_init();
llama_numa_init(params.numa);
LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
{"commit", LLAMA_COMMIT}});
LOG_INFO("system info", {
{"n_threads", params.n_threads},
{"n_threads_batch", params.n_threads_batch},
{"total_threads", std::thread::hardware_concurrency()},
{"system_info", llama_print_system_info()},
});
httplib::Server svr;
std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
svr.set_default_headers({{"Server", "llama.cpp"}});
// CORS preflight
svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
res.set_header("Access-Control-Allow-Credentials", "true");
res.set_header("Access-Control-Allow-Methods", "POST");
res.set_header("Access-Control-Allow-Headers", "*");
});
svr.Get("/health", [&](const httplib::Request& req, httplib::Response& res) {
server_state current_state = state.load();
switch(current_state) {
case SERVER_STATE_READY: {
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
llama.queue_tasks.post(task);
// get the result
task_result result = llama.queue_results.recv(task.id);
llama.queue_results.remove_waiting_task_id(task.id);
int n_idle_slots = result.result_json["idle"];
int n_processing_slots = result.result_json["processing"];
json health = {
{"status", "ok"},
{"slots_idle", n_idle_slots},
{"slots_processing", n_processing_slots}};
res.status = 200; // HTTP OK
if (sparams.slots_endpoint && req.has_param("include_slots")) {
health["slots"] = result.result_json["slots"];
}
if (n_idle_slots == 0) {
health["status"] = "no slot available";
if (req.has_param("fail_on_no_slot")) {
res.status = 503; // HTTP Service Unavailable
}
}
res.set_content(health.dump(), "application/json");
break;
}
case SERVER_STATE_LOADING_MODEL:
char buf[128];
snprintf(&buf[0], 128, R"({"status": "loading model", "progress": %0.2f})", llama.modelProgress);
res.set_content(buf, "application/json");
res.status = 503; // HTTP Service Unavailable
break;
case SERVER_STATE_ERROR:
res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
res.status = 500; // HTTP Internal Server Error
break;
}
});
if (sparams.slots_endpoint) {
svr.Get("/slots", [&](const httplib::Request&, httplib::Response& res) {
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
llama.queue_tasks.post(task);
// get the result
task_result result = llama.queue_results.recv(task.id);
llama.queue_results.remove_waiting_task_id(task.id);
res.set_content(result.result_json["slots"].dump(), "application/json");
res.status = 200; // HTTP OK
});
}
if (sparams.metrics_endpoint) {
svr.Get("/metrics", [&](const httplib::Request&, httplib::Response& res) {
// request slots data using task queue
task_server task;
task.id = llama.queue_tasks.get_new_id();
task.type = TASK_TYPE_METRICS;
task.target_id = -1;
llama.queue_results.add_waiting_task_id(task.id);
llama.queue_tasks.post(task);
// get the result
task_result result = llama.queue_results.recv(task.id);
llama.queue_results.remove_waiting_task_id(task.id);
json data = result.result_json;
uint64_t n_prompt_tokens_processed = data["n_prompt_tokens_processed"];
uint64_t t_prompt_processing = data["t_prompt_processing"];
uint64_t n_tokens_predicted = data["n_tokens_predicted"];
uint64_t t_tokens_generation = data["t_tokens_generation"];
int32_t kv_cache_used_cells = data["kv_cache_used_cells"];
// metrics definition: https://prometheus.io/docs/practices/naming/#metric-names
json all_metrics_def = json {
{"counter", {{
{"name", "prompt_tokens_total"},
{"help", "Number of prompt tokens processed."},
{"value", data["n_prompt_tokens_processed_total"]}
}, {
{"name", "tokens_predicted_total"},
{"help", "Number of generation tokens processed."},
{"value", data["n_tokens_predicted_total"]}
}}},
{"gauge", {{
{"name", "prompt_tokens_seconds"},
{"help", "Average prompt throughput in tokens/s."},
{"value", n_prompt_tokens_processed ? 1e3 / t_prompt_processing * n_prompt_tokens_processed : 0}
},{
{"name", "predicted_tokens_seconds"},
{"help", "Average generation throughput in tokens/s."},
{"value", n_tokens_predicted ? 1e3 / t_tokens_generation * n_tokens_predicted : 0}
},{
{"name", "kv_cache_usage_ratio"},
{"help", "KV-cache usage. 1 means 100 percent usage."},
{"value", 1. * kv_cache_used_cells / params.n_ctx}
},{
{"name", "kv_cache_tokens"},
{"help", "KV-cache tokens."},
{"value", data["kv_cache_tokens_count"]}
},{
{"name", "requests_processing"},
{"help", "Number of request processing."},
{"value", data["processing"]}
},{
{"name", "requests_deferred"},
{"help", "Number of request deferred."},
{"value", data["deferred"]}
}}}
};
std::stringstream prometheus;
for (const auto& el : all_metrics_def.items()) {
const auto& type = el.key();
const auto& metrics_def = el.value();
for (const auto& metric_def : metrics_def) {
std::string name = metric_def["name"];
std::string help = metric_def["help"];
auto value = json_value(metric_def, "value", 0);
prometheus << "# HELP llamacpp:" << name << " " << help << "\n"
<< "# TYPE llamacpp:" << name << " " << type << "\n"
<< "llamacpp:" << name << " " << value << "\n";
}
}
res.set_content(prometheus.str(), "text/plain; version=0.0.4");
res.status = 200; // HTTP OK
});
}
svr.set_logger(log_server_request);
svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
{
const char fmt[] = "500 Internal Server Error\n%s";
char buf[BUFSIZ];
try
{
std::rethrow_exception(std::move(ep));
}
catch (std::exception &e)
{
snprintf(buf, sizeof(buf), fmt, e.what());
}
catch (...)
{
snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
}
res.set_content(buf, "text/plain; charset=utf-8");
res.status = 500;
});
svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
{
if (res.status == 401)
{
res.set_content("Unauthorized", "text/plain; charset=utf-8");
}
if (res.status == 400)
{
res.set_content("Invalid request", "text/plain; charset=utf-8");
}
else if (res.status == 404)
{
res.set_content("File Not Found", "text/plain; charset=utf-8");
res.status = 404;
}
});
// set timeouts and change hostname and port
svr.set_read_timeout (sparams.read_timeout);
svr.set_write_timeout(sparams.write_timeout);
if (!svr.bind_to_port(sparams.hostname, sparams.port))
{
fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
return 1;
}
// Set the base directory for serving static files
svr.set_base_dir(sparams.public_path);
std::unordered_map<std::string, std::string> log_data;
log_data["hostname"] = sparams.hostname;
log_data["port"] = std::to_string(sparams.port);
if (sparams.api_keys.size() == 1) {
log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
} else if (sparams.api_keys.size() > 1) {
log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
}
if (sparams.n_threads_http < 1) {
// +2 threads for monitoring endpoints
sparams.n_threads_http = std::max(params.n_parallel + 2, (int32_t) std::thread::hardware_concurrency() - 1);
}
log_data["n_threads_http"] = std::to_string(sparams.n_threads_http);
svr.new_task_queue = [&sparams] { return new httplib::ThreadPool(sparams.n_threads_http); };
LOG_INFO("HTTP server listening", log_data);
// run the HTTP server in a thread - see comment below
std::thread t([&]()
{
if (!svr.listen_after_bind())
{
state.store(SERVER_STATE_ERROR);
return 1;
}
return 0;
});
// load the model
params.progress_callback = update_load_progress;
params.progress_callback_user_data = (void*)&llama;
if (!llama.load_model(params))
{
state.store(SERVER_STATE_ERROR);
return 1;
} else {
llama.initialize();
state.store(SERVER_STATE_READY);
LOG_INFO("model loaded", {});
}
const auto model_meta = llama.model_meta();
if (sparams.chat_template.empty()) { // custom chat template is not supplied
// check if the template comes with the model is supported by us
llama.validate_model_chat_template(sparams);
}
// Middleware for API key validation
auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
// If API key is not set, skip validation
if (sparams.api_keys.empty()) {
return true;
}
// Check for API key in the header
auto auth_header = req.get_header_value("Authorization");
std::string prefix = "Bearer ";
if (auth_header.substr(0, prefix.size()) == prefix) {
std::string received_api_key = auth_header.substr(prefix.size());
if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
return true; // API key is valid
}
}
// API key is invalid or not provided
res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
res.status = 401; // Unauthorized
LOG_WARNING("Unauthorized: Invalid API Key", {});
return false;
};
// this is only called if no index.html is found in the public --path
svr.Get("/", [](const httplib::Request &, httplib::Response &res)
{
res.set_content("server running", "text/plain; charset=utf-8");
res.status = 200; // Unauthorized
return true;
});
svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
if (!validate_api_key(req, res)) {
return;
}
json data = json::parse(req.body);
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, data, false, -1);
if (!json_value(data, "stream", false)) {
std::string completion_text;
task_result result = llama.queue_results.recv(task_id);
if (!result.error && result.stop) {
res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
}
else
{
res.status = 404;
res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
}
llama.queue_results.remove_waiting_task_id(task_id);
} else {
const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
{
while (true)
{
task_result result = llama.queue_results.recv(task_id);
if (!result.error) {
const std::string str =
"data: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.c_str(), str.size()))
{
llama.queue_results.remove_waiting_task_id(task_id);
return false;
}
if (result.stop) {
break;
}
} else {
const std::string str =
"error: " +
result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
"\n\n";
LOG_VERBOSE("data stream", {
{ "to_send", str }
});
if (!sink.write(str.c_str(), str.size()))
{
llama.queue_results.remove_waiting_task_id(task_id);
return false;
}
break;
}
}
llama.queue_results.remove_waiting_task_id(task_id);
sink.done();
return true;
};
auto on_complete = [task_id, &llama] (bool)
{
// cancel
llama.request_cancel(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
};
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
}
});
svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
{
res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
const json body = json::parse(req.body);
json prompt;
if (body.count("content") != 0)
{
prompt = body["content"];
}
else
{
prompt = "";
}
json image_data;
if (body.count("image_data") != 0) {
image_data = body["image_data"];
}
else
{
image_data = "";
}
// create and queue the task
const int task_id = llama.queue_tasks.get_new_id();
llama.queue_results.add_waiting_task_id(task_id);
llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, true, -1);
// get the result
task_result result = llama.queue_results.recv(task_id);
llama.queue_results.remove_waiting_task_id(task_id);
// send the result
return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
});
// GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
// "Bus error: 10" - this is on macOS, it does not crash on Linux
//std::thread t2([&]()
/*{
bool running = true;
while (running)
{
running = llama.update_slots();
}
}*/
//);
llama.queue_tasks.on_new_task(std::bind(
&llama_server_context::process_single_task, &llama, std::placeholders::_1));
llama.queue_tasks.on_finish_multitask(std::bind(
&llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
llama.queue_tasks.on_run_slots(std::bind(
&llama_server_context::update_slots, &llama));
llama.queue_results.on_multitask_update(std::bind(
&llama_server_queue::update_multitask,
&llama.queue_tasks,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3
));
shutdown_handler = [&](int) {
llama.queue_tasks.terminate();
};
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
struct sigaction sigint_action;
sigint_action.sa_handler = signal_handler;
sigemptyset (&sigint_action.sa_mask);
sigint_action.sa_flags = 0;
sigaction(SIGINT, &sigint_action, NULL);
#elif defined (_WIN32)
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
return (ctrl_type == CTRL_C_EVENT) ? (signal_handler(SIGINT), true) : false;
};
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
for (int i = 0; i < argc; ++i) {
delete[] argv[i];
}
delete[] argv;
#endif
llama.queue_tasks.start_loop();
svr.stop();
t.join();
llama_backend_free();
return 0;
}