96efd9052f
* Re-introduce the llama package This PR brings back the llama package, making it possible to call llama.cpp and ggml APIs from Go directly via CGo. This has a few advantages: - C APIs can be called directly from Go without needing to use the previous "server" REST API - On macOS and for CPU builds on Linux and Windows, Ollama can be built without a go generate ./... step, making it easy to get up and running to hack on parts of Ollama that don't require fast inference - Faster build times for AVX,AVX2,CUDA and ROCM (a full build of all runners takes <5 min on a fast CPU) - No git submodule making it easier to clone and build from source This is a big PR, but much of it is vendor code except for: - llama.go CGo bindings - example/: a simple example of running inference - runner/: a subprocess server designed to replace the llm/ext_server package - Makefile an as minimal as possible Makefile to build the runner package for different targets (cpu, avx, avx2, cuda, rocm) Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> * cache: Clear old KV cache entries when evicting a slot When forking a cache entry, if no empty slots are available we evict the least recently used one and copy over the KV entries from the closest match. However, this copy does not overwrite existing values but only adds new ones. Therefore, we need to clear the old slot first. This change fixes two issues: - The KV cache fills up and runs out of space even though we think we are managing it correctly - Performance gets worse over time as we use new cache entries that are not hot in the processor caches * doc: explain golang objc linker warning (#6830) * llama: gather transitive dependencies for rocm for dist packaging (#6848) * Refine go server makefiles to be more DRY (#6924) This breaks up the monolithic Makefile for the Go based runners into a set of utility files as well as recursive Makefiles for the runners. Files starting with the name "Makefile" are buildable, while files that end with ".make" are utilities to include in other Makefiles. This reduces the amount of nearly identical targets and helps set a pattern for future community contributions for new GPU runner architectures. When we are ready to switch over to the Go runners, these files should move to the top of the repo, and we should add targets for the main CLI, as well as a helper "install" (put all the built binaries on the local system in a runnable state) and "dist" target (generate the various tar/zip files for distribution) for local developer use. * llama: don't create extraneous directories (#6988) * llama: Exercise the new build in CI (#6989) Wire up some basic sanity testing in CI for the Go runner. GPU runners are not covered yet. * llama: Refine developer docs for Go server (#6842) This enhances the documentation for development focusing on the new Go server. After we complete the transition further doc refinements can remove the "transition" discussion. * runner.go: Allocate batches for all sequences during init We should tell the model that we could have full batches for all sequences. We already do this when we allocate the batches but it was missed during initialization. * llama.go: Don't return nil from Tokenize on zero length input Potentially receiving nil in a non-error condition is surprising to most callers - it's better to return an empty slice. * runner.go: Remove stop tokens from cache If the last token is EOG then we don't return this and it isn't present in the cache (because it was never submitted to Decode). This works well for extending the cache entry with a new sequence. However, for multi-token stop sequences, we won't return any of the tokens but all but the last one will be in the cache. This means when the conversation continues the cache will contain tokens that don't overlap with the new prompt. This works (we will pick up the portion where there is overlap) but it causes unnecessary cache thrashing because we will fork the original cache entry as it is not a perfect match. By trimming the cache to the tokens that we actually return this issue can be avoided. * runner.go: Simplify flushing of pending tokens * runner.go: Update TODOs * runner.go: Don't panic when processing sequences If there is an error processing a sequence, we should return a clean HTTP error back to Ollama rather than panicing. This will make us more resilient to transient failures. Panics can still occur during startup as there is no way to serve requests if that fails. Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: More accurately capture timings Currently prompt processing time doesn't capture the that it takes to tokenize the input, only decoding time. We should capture the full process to more accurately reflect reality. This is especially true once we start processing images where the initial processing can take significant time. This is also more consistent with the existing C++ runner. * runner.go: Support for vision models In addition to bringing feature parity with the C++ runner, this also incorporates several improvements: - Cache prompting works with images, avoiding the need to re-decode embeddings for every message in a conversation - Parallelism is supported, avoiding the need to restrict to one sequence at a time. (Though for now Ollama will not schedule them while we might need to fall back to the old runner.) Co-authored-by: jmorganca <jmorganca@gmail.com> * runner.go: Move Unicode checking code and add tests * runner.go: Export external cache members Runner and cache are in the same package so the change doesn't affect anything but it is more internally consistent. * runner.go: Image embedding cache Generating embeddings from images can take significant time (on my machine between 100ms and 8s depending on the model). Although we already cache the result of decoding these images, the embeddings need to be regenerated every time. This is not necessary if we get the same image over and over again, for example, during a conversation. This currently uses a very small cache with a very simple algorithm but it is easy to improve as is warranted. * llama: catch up on patches Carry forward solar-pro and cli-unicode patches * runner.go: Don't re-allocate memory for every batch We can reuse memory allocated from batch to batch since batch size is fixed. This both saves the cost of reallocation as well keeps the cache lines hot. This results in a roughly 1% performance improvement for token generation with Nvidia GPUs on Linux. * runner.go: Default to classic input cache policy The input cache as part of the go runner implemented a cache policy that aims to maximize hit rate in both single and multi- user scenarios. When there is a cache hit, the response is very fast. However, performance is actually slower when there is an input cache miss due to worse GPU VRAM locality. This means that performance is generally better overall for multi-user scenarios (better input cache hit rate, locality was relatively poor already). But worse for single users (input cache hit rate is about the same, locality is now worse). This defaults the policy back to the old one to avoid a regression but keeps the new one available through an environment variable OLLAMA_MULTIUSER_CACHE. This is left undocumented as the goal is to improve this in the future to get the best of both worlds without user configuration. For inputs that result in cache misses, on Nvidia/Linux this change improves performance by 31% for prompt processing and 13% for token generation. * runner.go: Increase size of response channel Generally the CPU can easily keep up with handling reponses that are generated but there's no reason not to let generation continue and handle things in larger batches if needed. * llama: Add CI to verify all vendored changes have patches (#7066) Make sure we don't accidentally merge changes in the vendored code that aren't also reflected in the patches. * llama: adjust clip patch for mingw utf-16 (#7065) * llama: adjust clip patch for mingw utf-16 * llama: ensure static linking of runtime libs Avoid runtime dependencies on non-standard libraries * runner.go: Enable llamafile (all platforms) and BLAS (Mac OS) These are two features that are shown on llama.cpp's system info that are currently different between the two runners. On my test systems the performance difference is very small to negligible but it is probably still good to equalize the features. * llm: Don't add BOS/EOS for tokenize requests This is consistent with what server.cpp currently does. It affects things like token processing counts for embedding requests. * runner.go: Don't cache prompts for embeddings Our integration with server.cpp implicitly disables prompt caching because it is not part of the JSON object being parsed, this makes the Go runner behavior similarly. Prompt caching has been seen to affect the results of text completions on certain hardware. The results are not wrong either way but they are non-deterministic. However, embeddings seem to be affected even on hardware that does not show this behavior for completions. For now, it is best to maintain consistency with the existing behavior. * runner.go: Adjust debug log levels Add system info printed at startup and quiet down noisier logging. * llama: fix compiler flag differences (#7082) Adjust the flags for the new Go server to more closely match the generate flow * llama: refine developer docs (#7121) * llama: doc and example clean up (#7122) * llama: doc and example clean up * llama: Move new dockerfile into llama dir Temporary home until we fully transition to the Go server * llama: runner doc cleanup * llama.go: Add description for Tokenize error case --------- Co-authored-by: Jesse Gross <jesse@ollama.com> Co-authored-by: Daniel Hiltgen <daniel@ollama.com> Co-authored-by: Daniel Hiltgen <dhiltgen@users.noreply.github.com>
709 lines
29 KiB
Text
Vendored
709 lines
29 KiB
Text
Vendored
/**
|
|
* llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file
|
|
*
|
|
* MIT License
|
|
*
|
|
* Copyright (c) 2023-2024 The ggml authors
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in all
|
|
* copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
* SOFTWARE.
|
|
*/
|
|
|
|
#include "dmmv.cuh"
|
|
#include "dequantize.cuh"
|
|
#include "convert.cuh"
|
|
|
|
#ifndef K_QUANTS_PER_ITERATION
|
|
#define K_QUANTS_PER_ITERATION 2
|
|
#else
|
|
static_assert(K_QUANTS_PER_ITERATION == 1 || K_QUANTS_PER_ITERATION == 2, "K_QUANTS_PER_ITERATION must be 1 or 2");
|
|
#endif
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q2_K * x = (const block_q2_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int s_offset = 8*im;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint32_t aux[4];
|
|
const uint8_t * d = (const uint8_t *)aux;
|
|
const uint8_t * m = (const uint8_t *)(aux + 2);
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
|
|
const float dall = __low2half(x[i].dm);
|
|
const float dmin = __high2half(x[i].dm);
|
|
|
|
const uint32_t * a = (const uint32_t *)(x[i].scales + s_offset);
|
|
aux[0] = a[0] & 0x0f0f0f0f;
|
|
aux[1] = a[1] & 0x0f0f0f0f;
|
|
aux[2] = (a[0] >> 4) & 0x0f0f0f0f;
|
|
aux[3] = (a[1] >> 4) & 0x0f0f0f0f;
|
|
|
|
float sum1 = 0, sum2 = 0;
|
|
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
|
|
sum1 += y[l+ 0] * d[0] * ((q[l+ 0] >> 0) & 3)
|
|
+ y[l+32] * d[2] * ((q[l+ 0] >> 2) & 3)
|
|
+ y[l+64] * d[4] * ((q[l+ 0] >> 4) & 3)
|
|
+ y[l+96] * d[6] * ((q[l+ 0] >> 6) & 3)
|
|
+ y[l+16] * d[1] * ((q[l+16] >> 0) & 3)
|
|
+ y[l+48] * d[3] * ((q[l+16] >> 2) & 3)
|
|
+ y[l+80] * d[5] * ((q[l+16] >> 4) & 3)
|
|
+y[l+112] * d[7] * ((q[l+16] >> 6) & 3);
|
|
sum2 += y[l+ 0] * m[0] + y[l+32] * m[2] + y[l+64] * m[4] + y[ l+96] * m[6]
|
|
+ y[l+16] * m[1] + y[l+48] * m[3] + y[l+80] * m[5] + y[l+112] * m[7];
|
|
|
|
}
|
|
tmp += dall * sum1 - dmin * sum2;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q3_K * x = (const block_q3_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
const uint16_t kmask1 = 0x0303;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int n = K_QUANTS_PER_ITERATION; // iterations in the inner loop
|
|
const int step = 16/K_QUANTS_PER_ITERATION;
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0....15 or 0...7
|
|
|
|
const uint8_t m = 1 << (4*im);
|
|
|
|
const int l0 = n*in; // 0...15 or 0...14 in steps of 2
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
uint16_t utmp[4];
|
|
const int8_t * s = (const int8_t *)utmp;
|
|
|
|
const uint16_t s_shift = 4*im;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * q = x[i].qs + q_offset;
|
|
const uint8_t * h = x[i].hmask + l0;
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
utmp[0] = ((a[0] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[1] = ((a[1] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 0)) & kmask1) << 4);
|
|
utmp[2] = ((a[2] >> s_shift) & kmask2) | (((a[4] >> (s_shift + 2)) & kmask1) << 4);
|
|
utmp[3] = ((a[3] >> s_shift) & kmask2) | (((a[5] >> (s_shift + 2)) & kmask1) << 4);
|
|
|
|
const float d = x[i].d;
|
|
|
|
float sum = 0;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum += y[l+ 0] * (s[0] - 32) * (((q[l] >> 0) & 3) - (h[l] & (m << 0) ? 0 : 4))
|
|
+ y[l+32] * (s[2] - 32) * (((q[l] >> 2) & 3) - (h[l] & (m << 1) ? 0 : 4))
|
|
+ y[l+64] * (s[4] - 32) * (((q[l] >> 4) & 3) - (h[l] & (m << 2) ? 0 : 4))
|
|
+ y[l+96] * (s[6] - 32) * (((q[l] >> 6) & 3) - (h[l] & (m << 3) ? 0 : 4));
|
|
sum += y[l+16] * (s[1] - 32) * (((q[l+16] >> 0) & 3) - (h[l+16] & (m << 0) ? 0 : 4))
|
|
+ y[l+48] * (s[3] - 32) * (((q[l+16] >> 2) & 3) - (h[l+16] & (m << 1) ? 0 : 4))
|
|
+ y[l+80] * (s[5] - 32) * (((q[l+16] >> 4) & 3) - (h[l+16] & (m << 2) ? 0 : 4))
|
|
+ y[l+112] * (s[7] - 32) * (((q[l+16] >> 6) & 3) - (h[l+16] & (m << 3) ? 0 : 4));
|
|
}
|
|
tmp += d * sum;
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q4_K * x = (const block_q4_K *)vx + ib0;
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
|
|
|
|
const int step = 8/K_QUANTS_PER_ITERATION; // 8 or 4
|
|
|
|
const int il = tid/step; // 0...3
|
|
const int ir = tid - step*il; // 0...7 or 0...3
|
|
const int n = 2 * K_QUANTS_PER_ITERATION; // 2 or 4
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
uint32_t q32[4];
|
|
const uint8_t * q4 = (const uint8_t *)q32;
|
|
#else
|
|
uint16_t q16[4];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
#endif
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = __low2half(x[i].dm);
|
|
const float dmin = __high2half(x[i].dm);
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
#if K_QUANTS_PER_ITERATION == 2
|
|
const uint32_t * q1 = (const uint32_t *)(x[i].qs + q_offset);
|
|
const uint32_t * q2 = q1 + 16;
|
|
|
|
q32[0] = q1[0] & 0x0f0f0f0f;
|
|
q32[1] = q1[0] & 0xf0f0f0f0;
|
|
q32[2] = q2[0] & 0x0f0f0f0f;
|
|
q32[3] = q2[0] & 0xf0f0f0f0;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+ 4];
|
|
s.z += y2[l] * q4[l+8]; s.w += y2[l+32] * q4[l+12];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
#else
|
|
const uint16_t * q1 = (const uint16_t *)(x[i].qs + q_offset);
|
|
const uint16_t * q2 = q1 + 32;
|
|
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[0] & 0xf0f0;
|
|
q16[2] = q2[0] & 0x0f0f;
|
|
q16[3] = q2[0] & 0xf0f0;
|
|
|
|
float4 s = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
for (int l = 0; l < 2; ++l) {
|
|
s.x += y1[l] * q4[l+0]; s.y += y1[l+32] * q4[l+2];
|
|
s.z += y2[l] * q4[l+4]; s.w += y2[l+32] * q4[l+6];
|
|
smin += y1[l] * sc[2] + y1[l+32] * sc[3] + y2[l] * sc[6] + y2[l+32] * sc[7];
|
|
}
|
|
tmp += dall * (s.x * sc[0] + s.y * sc[1] * 1.f/16.f + s.z * sc[4] + s.w * sc[5] * 1.f/16.f) - dmin * smin;
|
|
#endif
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols) {
|
|
|
|
const int row = blockIdx.x;
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q5_K * x = (const block_q5_K *)vx + ib0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
const uint16_t kmask1 = 0x3f3f;
|
|
const uint16_t kmask2 = 0x0f0f;
|
|
const uint16_t kmask3 = 0xc0c0;
|
|
|
|
const int tid = threadIdx.x/2; // 0...15
|
|
const int ix = threadIdx.x%2;
|
|
|
|
const int il = tid/4; // 0...3
|
|
const int ir = tid - 4*il;// 0...3
|
|
const int n = 2;
|
|
|
|
const int im = il/2; // 0 or 1. 0 computes 0,32 + 128,160, 1 computes 64,96 + 192,224
|
|
const int in = il%2;
|
|
|
|
const int l0 = n*(2*ir + in);
|
|
const int q_offset = 32*im + l0;
|
|
const int y_offset = 64*im + l0;
|
|
|
|
const uint8_t hm1 = 1 << (2*im);
|
|
const uint8_t hm2 = hm1 << 4;
|
|
|
|
uint16_t aux[4];
|
|
const uint8_t * sc = (const uint8_t *)aux;
|
|
|
|
uint16_t q16[8];
|
|
const uint8_t * q4 = (const uint8_t *)q16;
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += 2) {
|
|
|
|
const uint8_t * ql1 = x[i].qs + q_offset;
|
|
const uint8_t * qh = x[i].qh + l0;
|
|
const float * y1 = yy + i*QK_K + y_offset;
|
|
const float * y2 = y1 + 128;
|
|
|
|
const float dall = __low2half(x[i].dm);
|
|
const float dmin = __high2half(x[i].dm);
|
|
|
|
const uint16_t * a = (const uint16_t *)x[i].scales;
|
|
aux[0] = a[im+0] & kmask1;
|
|
aux[1] = a[im+2] & kmask1;
|
|
aux[2] = ((a[im+4] >> 0) & kmask2) | ((a[im+0] & kmask3) >> 2);
|
|
aux[3] = ((a[im+4] >> 4) & kmask2) | ((a[im+2] & kmask3) >> 2);
|
|
|
|
float4 sum = {0.f, 0.f, 0.f, 0.f};
|
|
float smin = 0;
|
|
const uint16_t * q1 = (const uint16_t *)ql1;
|
|
const uint16_t * q2 = q1 + 32;
|
|
q16[0] = q1[0] & 0x0f0f;
|
|
q16[1] = q1[8] & 0x0f0f;
|
|
q16[2] = (q1[0] >> 4) & 0x0f0f;
|
|
q16[3] = (q1[8] >> 4) & 0x0f0f;
|
|
q16[4] = q2[0] & 0x0f0f;
|
|
q16[5] = q2[8] & 0x0f0f;
|
|
q16[6] = (q2[0] >> 4) & 0x0f0f;
|
|
q16[7] = (q2[8] >> 4) & 0x0f0f;
|
|
for (int l = 0; l < n; ++l) {
|
|
sum.x += y1[l+ 0] * (q4[l +0] + (qh[l+ 0] & (hm1 << 0) ? 16 : 0))
|
|
+ y1[l+16] * (q4[l +2] + (qh[l+16] & (hm1 << 0) ? 16 : 0));
|
|
sum.y += y1[l+32] * (q4[l +4] + (qh[l+ 0] & (hm1 << 1) ? 16 : 0))
|
|
+ y1[l+48] * (q4[l +6] + (qh[l+16] & (hm1 << 1) ? 16 : 0));
|
|
sum.z += y2[l+ 0] * (q4[l +8] + (qh[l+ 0] & (hm2 << 0) ? 16 : 0))
|
|
+ y2[l+16] * (q4[l+10] + (qh[l+16] & (hm2 << 0) ? 16 : 0));
|
|
sum.w += y2[l+32] * (q4[l+12] + (qh[l+ 0] & (hm2 << 1) ? 16 : 0))
|
|
+ y2[l+48] * (q4[l+14] + (qh[l+16] & (hm2 << 1) ? 16 : 0));
|
|
smin += (y1[l] + y1[l+16]) * sc[2] + (y1[l+32] + y1[l+48]) * sc[3]
|
|
+ (y2[l] + y2[l+16]) * sc[6] + (y2[l+32] + y2[l+48]) * sc[7];
|
|
}
|
|
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (threadIdx.x == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const float * __restrict__ yy, float * __restrict__ dst, const int ncols, int nrows) {
|
|
|
|
static_assert(16%K_QUANTS_PER_ITERATION == 0, "16 must be divisible by K_QUANTS_PER_ITERATION");
|
|
|
|
const int row = blockIdx.x*blockDim.y + threadIdx.y;
|
|
if (row > nrows) return;
|
|
|
|
const int num_blocks_per_row = ncols / QK_K;
|
|
const int ib0 = row*num_blocks_per_row;
|
|
|
|
const block_q6_K * x = (const block_q6_K *)vx + ib0;
|
|
|
|
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
|
|
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
|
|
|
|
const int step = 16/K_QUANTS_PER_ITERATION; // 16 or 8
|
|
|
|
const int im = tid/step; // 0 or 1. 0 computes 0..., 1 computes 128...
|
|
const int in = tid - step*im; // 0...15 or 0...7
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
const int l0 = K_QUANTS_PER_ITERATION*in; // 0...15
|
|
const int is = 0;
|
|
#else
|
|
const int l0 = 4 * in; // 0, 4, 8, ..., 28
|
|
const int is = in / 4;
|
|
#endif
|
|
const int ql_offset = 64*im + l0;
|
|
const int qh_offset = 32*im + l0;
|
|
const int s_offset = 8*im + is;
|
|
const int y_offset = 128*im + l0;
|
|
|
|
float tmp = 0; // partial sum for thread in warp
|
|
|
|
for (int i = ix; i < num_blocks_per_row; i += K_QUANTS_PER_ITERATION) {
|
|
|
|
const float * y = yy + i * QK_K + y_offset;
|
|
const uint8_t * ql = x[i].ql + ql_offset;
|
|
const uint8_t * qh = x[i].qh + qh_offset;
|
|
const int8_t * s = x[i].scales + s_offset;
|
|
|
|
const float d = x[i].d;
|
|
|
|
#if K_QUANTS_PER_ITERATION == 1
|
|
float sum = y[ 0] * s[0] * d * ((int8_t)((ql[ 0] & 0xF) | ((qh[ 0] & 0x03) << 4)) - 32)
|
|
+ y[16] * s[1] * d * ((int8_t)((ql[16] & 0xF) | ((qh[16] & 0x03) << 4)) - 32)
|
|
+ y[32] * s[2] * d * ((int8_t)((ql[32] & 0xF) | ((qh[ 0] & 0x0c) << 2)) - 32)
|
|
+ y[48] * s[3] * d * ((int8_t)((ql[48] & 0xF) | ((qh[16] & 0x0c) << 2)) - 32)
|
|
+ y[64] * s[4] * d * ((int8_t)((ql[ 0] >> 4) | ((qh[ 0] & 0x30) >> 0)) - 32)
|
|
+ y[80] * s[5] * d * ((int8_t)((ql[16] >> 4) | ((qh[16] & 0x30) >> 0)) - 32)
|
|
+ y[96] * s[6] * d * ((int8_t)((ql[32] >> 4) | ((qh[ 0] & 0xc0) >> 2)) - 32)
|
|
+y[112] * s[7] * d * ((int8_t)((ql[48] >> 4) | ((qh[16] & 0xc0) >> 2)) - 32);
|
|
tmp += sum;
|
|
#else
|
|
float sum = 0;
|
|
for (int l = 0; l < 4; ++l) {
|
|
sum += y[l+ 0] * s[0] * d * ((int8_t)((ql[l+ 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32)
|
|
+ y[l+32] * s[2] * d * ((int8_t)((ql[l+32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32)
|
|
+ y[l+64] * s[4] * d * ((int8_t)((ql[l+ 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32)
|
|
+ y[l+96] * s[6] * d * ((int8_t)((ql[l+32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32);
|
|
}
|
|
tmp += sum;
|
|
#endif
|
|
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (tid == 0) {
|
|
dst[row] = tmp;
|
|
}
|
|
}
|
|
|
|
static __device__ void convert_f16(const void * vx, const int64_t ib, const int iqs, dfloat2 & v){
|
|
const half * x = (const half *) vx;
|
|
|
|
// automatic half -> float type cast if dfloat == float
|
|
v.x = x[ib + iqs + 0];
|
|
v.y = x[ib + iqs + 1];
|
|
}
|
|
|
|
static constexpr __device__ dequantize_kernel_t get_dequantize_kernel(ggml_type type) {
|
|
return type == GGML_TYPE_Q4_0 ? dequantize_q4_0 :
|
|
type == GGML_TYPE_Q4_1 ? dequantize_q4_1 :
|
|
type == GGML_TYPE_Q5_0 ? dequantize_q5_0 :
|
|
type == GGML_TYPE_Q5_1 ? dequantize_q5_1 :
|
|
type == GGML_TYPE_Q8_0 ? dequantize_q8_0 :
|
|
type == GGML_TYPE_F16 ? convert_f16 :
|
|
nullptr;
|
|
}
|
|
|
|
template <ggml_type type>
|
|
static __global__ void dequantize_mul_mat_vec(const void * __restrict__ vx, const dfloat * __restrict__ y, float * __restrict__ dst, const int ncols, const int nrows) {
|
|
constexpr int qk = ggml_cuda_type_traits<type>::qk; // quantized weights per x block
|
|
constexpr int qr = ggml_cuda_type_traits<type>::qr; // number of quantized weights per data value in x block
|
|
constexpr dequantize_kernel_t dequantize_kernel = get_dequantize_kernel(type);
|
|
|
|
const int64_t row = (int64_t)blockIdx.x*blockDim.y + threadIdx.y;
|
|
|
|
if (row >= nrows) {
|
|
return;
|
|
}
|
|
|
|
const int tid = threadIdx.x;
|
|
|
|
const int iter_stride = 2*GGML_CUDA_DMMV_X;
|
|
const int vals_per_iter = iter_stride / WARP_SIZE; // num quantized vals per thread and i iter
|
|
const int y_offset = qr == 1 ? 1 : qk/2;
|
|
|
|
// partial sum for each thread
|
|
#ifdef GGML_CUDA_F16
|
|
half2 tmp = {0.0f, 0.0f}; // two sums for f16 to take advantage of half2 intrinsics
|
|
#else
|
|
float tmp = 0.0f;
|
|
#endif // GGML_CUDA_F16
|
|
|
|
for (int i = 0; i < ncols; i += iter_stride) {
|
|
const int col = i + vals_per_iter*tid;
|
|
const int64_t ib = ((int64_t)row*ncols + col)/qk; // x block index
|
|
const int iqs = (col%qk)/qr; // x quant index
|
|
const int iybs = col - col%qk; // y block start index
|
|
|
|
// processing >2 values per i iter is faster for fast GPUs
|
|
#pragma unroll
|
|
for (int j = 0; j < vals_per_iter; j += 2) {
|
|
// process 2 vals per j iter
|
|
|
|
// dequantize
|
|
// for qr = 2 the iqs needs to increase by 1 per j iter because 2 weights per data val
|
|
dfloat2 v;
|
|
dequantize_kernel(vx, ib, iqs + j/qr, v);
|
|
|
|
// matrix multiplication
|
|
// for qr = 2 the y index needs to increase by 1 per j iter because of y_offset = qk/2
|
|
#ifdef GGML_CUDA_F16
|
|
tmp += __hmul2(v, {
|
|
y[iybs + iqs + j/qr + 0],
|
|
y[iybs + iqs + j/qr + y_offset]
|
|
});
|
|
#else
|
|
tmp += v.x * y[iybs + iqs + j/qr + 0];
|
|
tmp += v.y * y[iybs + iqs + j/qr + y_offset];
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
}
|
|
|
|
// sum up partial sums and write back result
|
|
tmp = warp_reduce_sum(tmp);
|
|
|
|
if (tid == 0) {
|
|
#ifdef GGML_CUDA_F16
|
|
dst[row] = tmp.x + tmp.y;
|
|
#else
|
|
dst[row] = tmp;
|
|
#endif // GGML_CUDA_F16
|
|
}
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
// the number of rows may exceed maximum grid size in the y or z dimensions, use the x dimension instead
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_Q4_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_Q4_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_Q5_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_1_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_Q5_1>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q8_0_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_Q8_0>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q2_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2; // very slightly faster than 1 even when K_QUANTS_PER_ITERATION = 2
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q2_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q3_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q3_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q4_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q4_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q5_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const dim3 block_dims(32, 1, 1);
|
|
dequantize_mul_mat_vec_q5_k<<<nrows, block_dims, 0, stream>>>(vx, y, dst, ncols);
|
|
}
|
|
|
|
static void dequantize_mul_mat_vec_q6_K_cuda(const void * vx, const float * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % QK_K == 0);
|
|
const int ny = 2 / K_QUANTS_PER_ITERATION;
|
|
const int block_num_y = (nrows + ny - 1) / ny;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(32, ny, 1);
|
|
dequantize_mul_mat_vec_q6_k<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
|
GGML_ASSERT(ncols % (GGML_CUDA_DMMV_X*2) == 0);
|
|
const int block_num_y = (nrows + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
|
|
const dim3 block_nums(block_num_y, 1, 1);
|
|
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
|
|
dequantize_mul_mat_vec<GGML_TYPE_F16>
|
|
<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols, nrows);
|
|
}
|
|
|
|
void ggml_cuda_op_dequantize_mul_mat_vec(
|
|
ggml_backend_cuda_context & ctx,
|
|
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
|
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
|
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
|
GGML_UNUSED(ctx);
|
|
const int64_t ne00 = src0->ne[0];
|
|
const int64_t row_diff = row_high - row_low;
|
|
|
|
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
|
|
|
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
|
|
#ifdef GGML_CUDA_F16
|
|
ggml_cuda_pool_alloc<half> src1_dfloat_a(ctx.pool());
|
|
half * src1_dfloat = nullptr; // dfloat == half
|
|
|
|
bool src1_convert_f16 =
|
|
src0->type == GGML_TYPE_Q4_0 || src0->type == GGML_TYPE_Q4_1 ||
|
|
src0->type == GGML_TYPE_Q5_0 || src0->type == GGML_TYPE_Q5_1 ||
|
|
src0->type == GGML_TYPE_Q8_0 || src0->type == GGML_TYPE_F16;
|
|
|
|
if (src1_convert_f16) {
|
|
src1_dfloat = src1_dfloat_a.alloc(ne00);
|
|
const to_fp16_cuda_t to_fp16_cuda = ggml_get_to_fp16_cuda(src1->type);
|
|
GGML_ASSERT(to_fp16_cuda != nullptr);
|
|
to_fp16_cuda(src1_ddf_i, src1_dfloat, ne00, stream);
|
|
}
|
|
#else
|
|
const dfloat * src1_dfloat = (const dfloat *) src1_ddf_i; // dfloat == float, no conversion
|
|
#endif // GGML_CUDA_F16
|
|
|
|
switch (src0->type) {
|
|
case GGML_TYPE_Q4_0:
|
|
dequantize_mul_mat_vec_q4_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_1:
|
|
dequantize_mul_mat_vec_q4_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_0:
|
|
dequantize_mul_mat_vec_q5_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_1:
|
|
dequantize_mul_mat_vec_q5_1_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q8_0:
|
|
dequantize_mul_mat_vec_q8_0_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q2_K:
|
|
dequantize_mul_mat_vec_q2_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q3_K:
|
|
dequantize_mul_mat_vec_q3_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q4_K:
|
|
dequantize_mul_mat_vec_q4_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q5_K:
|
|
dequantize_mul_mat_vec_q5_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_Q6_K:
|
|
dequantize_mul_mat_vec_q6_K_cuda(src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
case GGML_TYPE_F16:
|
|
convert_mul_mat_vec_f16_cuda(src0_dd_i, src1_dfloat, dst_dd_i, ne00, row_diff, stream);
|
|
break;
|
|
default:
|
|
GGML_ABORT("fatal error");
|
|
break;
|
|
}
|
|
|
|
GGML_UNUSED(src1);
|
|
GGML_UNUSED(dst);
|
|
GGML_UNUSED(src1_ddq_i);
|
|
GGML_UNUSED(src1_ncols);
|
|
GGML_UNUSED(src1_padded_row_size);
|
|
}
|
|
|
|
bool ggml_cuda_dmmv_type_supported(ggml_type src0_type) {
|
|
return src0_type == GGML_TYPE_Q4_0 || src0_type == GGML_TYPE_Q4_1 ||
|
|
src0_type == GGML_TYPE_Q5_0 || src0_type == GGML_TYPE_Q5_1 ||
|
|
src0_type == GGML_TYPE_Q8_0 || src0_type == GGML_TYPE_Q2_K ||
|
|
src0_type == GGML_TYPE_Q3_K || src0_type == GGML_TYPE_Q4_K ||
|
|
src0_type == GGML_TYPE_Q5_K || src0_type == GGML_TYPE_Q6_K ||
|
|
src0_type == GGML_TYPE_F16;
|
|
}
|