ollama/llm/llama.go
Daniel Hiltgen d966b730ac Switch windows build to fully dynamic
Refactor where we store build outputs, and support a fully dynamic loading
model on windows so the base executable has no special dependencies thus
doesn't require a special PATH.
2024-01-02 15:36:16 -08:00

205 lines
4.3 KiB
Go

package llm
import (
"bytes"
"context"
_ "embed"
"errors"
"fmt"
"os"
"os/exec"
"sync"
"time"
"github.com/jmorganca/ollama/api"
"github.com/jmorganca/ollama/format"
)
const jsonGrammar = `
root ::= object
value ::= object | array | string | number | ("true" | "false" | "null") ws
object ::=
"{" ws (
string ":" ws value
("," ws string ":" ws value)*
)? "}" ws
array ::=
"[" ws (
value
("," ws value)*
)? "]" ws
string ::=
"\"" (
[^"\\] |
"\\" (["\\/bfnrt] | "u" [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F] [0-9a-fA-F]) # escapes
)* "\"" ws
number ::= ("-"? ([0-9] | [1-9] [0-9]*)) ("." [0-9]+)? ([eE] [-+]? [0-9]+)? ws
# Optional space: by convention, applied in this grammar after literal chars when allowed
ws ::= ([ \t\n] ws)?
`
type llamaModel struct {
hyperparameters llamaHyperparameters
}
func (llm *llamaModel) ModelFamily() string {
return "llama"
}
func llamaModelType(numLayer uint32) string {
switch numLayer {
case 26:
return "3B"
case 32:
return "7B"
case 40:
return "13B"
case 48:
return "34B"
case 60:
return "30B"
case 80:
return "65B"
default:
return "unknown"
}
}
func (llm *llamaModel) ModelType() string {
return llamaModelType(llm.hyperparameters.NumLayer)
}
func (llm *llamaModel) FileType() string {
return fileType(llm.hyperparameters.FileType)
}
func (llm *llamaModel) NumLayers() int64 {
return int64(llm.hyperparameters.NumLayer)
}
type llamaHyperparameters struct {
// NumVocab is the size of the model's vocabulary.
NumVocab uint32
// NumEmbd is the size of the model's embedding layer.
NumEmbd uint32
NumMult uint32
NumHead uint32
// NumLayer is the number of layers in the model.
NumLayer uint32
NumRot uint32
// FileType describes the quantization level of the model, e.g. Q4_0, Q5_K, etc.
FileType uint32
}
type Running struct {
Port int
Cmd *exec.Cmd
Cancel context.CancelFunc
exitOnce sync.Once
exitCh chan error // channel to receive the exit status of the subprocess
*StatusWriter // captures error messages from the llama runner process
}
type ImageData struct {
Data []byte `json:"data"`
ID int `json:"id"`
}
var (
errNvidiaSMI = errors.New("warning: gpu support may not be enabled, check that you have installed GPU drivers: nvidia-smi command failed")
errAvailableVRAM = errors.New("not enough VRAM available, falling back to CPU only")
payloadMissing = fmt.Errorf("expected dynamic library payloads not included in this build of ollama")
)
// StatusWriter is a writer that captures error messages from the llama runner process
type StatusWriter struct {
ErrCh chan error
LastErrMsg string
}
func NewStatusWriter() *StatusWriter {
return &StatusWriter{
ErrCh: make(chan error, 1),
}
}
func (w *StatusWriter) Write(b []byte) (int, error) {
var errMsg string
if _, after, ok := bytes.Cut(b, []byte("error:")); ok {
errMsg = string(bytes.TrimSpace(after))
} else if _, after, ok := bytes.Cut(b, []byte("CUDA error")); ok {
errMsg = string(bytes.TrimSpace(after))
}
if errMsg != "" {
w.LastErrMsg = errMsg
w.ErrCh <- fmt.Errorf("llama runner: %s", errMsg)
}
return os.Stderr.Write(b)
}
type prediction struct {
Content string `json:"content"`
Model string `json:"model"`
Prompt string `json:"prompt"`
Stop bool `json:"stop"`
Timings struct {
PredictedN int `json:"predicted_n"`
PredictedMS float64 `json:"predicted_ms"`
PromptN int `json:"prompt_n"`
PromptMS float64 `json:"prompt_ms"`
}
}
const maxBufferSize = 512 * format.KiloByte
const maxRetries = 3
const retryDelay = 1 * time.Second
type PredictOpts struct {
Prompt string
Format string
Images []api.ImageData
}
type PredictResult struct {
Content string
Done bool
PromptEvalCount int
PromptEvalDuration time.Duration
EvalCount int
EvalDuration time.Duration
}
type TokenizeRequest struct {
Content string `json:"content"`
}
type TokenizeResponse struct {
Tokens []int `json:"tokens"`
}
type DetokenizeRequest struct {
Tokens []int `json:"tokens"`
}
type DetokenizeResponse struct {
Content string `json:"content"`
}
type EmbeddingRequest struct {
Content string `json:"content"`
}
type EmbeddingResponse struct {
Embedding []float64 `json:"embedding"`
}