c826e57475
-Update mllama to take the cross attention state as embeddings in a batch, more similar to how Llava handles it. This improves integration with the input cache. -Pass locations in a prompt for embeddings using tags similar to Llava. -Abstract interface to vision models so the main runner accesses Clip and Mllama similarly Co-authored-by: Michael Yang <mxyng@pm.me>
732 lines
34 KiB
Diff
732 lines
34 KiB
Diff
From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
|
|
From: jmorganca <jmorganca@gmail.com>
|
|
Date: Thu, 17 Oct 2024 15:18:22 -0700
|
|
Subject: [PATCH] add mllama support
|
|
|
|
mllama adds cross-attention layers to the standard llama architecture
|
|
it also requires a way to input a new tensor: cross_attention_state
|
|
once per generation
|
|
|
|
cross-attention layers don't change and so they are cached in the
|
|
kv cache once per run
|
|
|
|
remaining is to implement the cross attention mask
|
|
---
|
|
examples/llava/llava.cpp | 2 +-
|
|
include/llama.h | 5 +
|
|
src/llama.cpp | 447 +++++++++++++++++++++++++++++++++++++--
|
|
3 files changed, 436 insertions(+), 18 deletions(-)
|
|
|
|
diff --git a/examples/llava/llava.cpp b/examples/llava/llava.cpp
|
|
index 8558c6bd..37b2f2e2 100644
|
|
--- a/examples/llava/llava.cpp
|
|
+++ b/examples/llava/llava.cpp
|
|
@@ -409,7 +409,7 @@ bool llava_eval_image_embed(llama_context * ctx_llama, const struct llava_image_
|
|
if (n_eval > n_batch) {
|
|
n_eval = n_batch;
|
|
}
|
|
- llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
|
+ llama_batch batch = {int32_t(n_eval), nullptr, (image_embed->embed+i*n_embd), n_embd, nullptr, nullptr, nullptr, nullptr, *n_past, 1, 0, };
|
|
if (llama_decode(ctx_llama, batch)) {
|
|
LOG_ERR("%s : failed to eval\n", __func__);
|
|
return false;
|
|
diff --git a/include/llama.h b/include/llama.h
|
|
index 7cae1bbe..aca09310 100644
|
|
--- a/include/llama.h
|
|
+++ b/include/llama.h
|
|
@@ -240,6 +240,7 @@ extern "C" {
|
|
|
|
llama_token * token;
|
|
float * embd;
|
|
+ int32_t n_embd;
|
|
llama_pos * pos;
|
|
int32_t * n_seq_id;
|
|
llama_seq_id ** seq_id;
|
|
@@ -423,6 +424,10 @@ extern "C" {
|
|
struct llama_model * model,
|
|
struct llama_context_params params);
|
|
|
|
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
+ // and not set on the context for all batches.
|
|
+ LLAMA_API void llama_set_cross_attention(struct llama_context * ctx, bool cross_attn_state);
|
|
+
|
|
// Frees all allocated memory
|
|
LLAMA_API void llama_free(struct llama_context * ctx);
|
|
|
|
diff --git a/src/llama.cpp b/src/llama.cpp
|
|
index 83b80b59..35748488 100644
|
|
--- a/src/llama.cpp
|
|
+++ b/src/llama.cpp
|
|
@@ -169,6 +169,7 @@ static std::string format(const char * fmt, ...) {
|
|
|
|
enum llm_arch {
|
|
LLM_ARCH_LLAMA,
|
|
+ LLM_ARCH_MLLAMA,
|
|
LLM_ARCH_FALCON,
|
|
LLM_ARCH_BAICHUAN,
|
|
LLM_ARCH_GROK,
|
|
@@ -223,6 +224,7 @@ enum llm_arch {
|
|
|
|
static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
|
{ LLM_ARCH_LLAMA, "llama" },
|
|
+ { LLM_ARCH_MLLAMA, "mllama" },
|
|
{ LLM_ARCH_FALCON, "falcon" },
|
|
{ LLM_ARCH_GROK, "grok" },
|
|
{ LLM_ARCH_GPT2, "gpt2" },
|
|
@@ -330,6 +332,7 @@ enum llm_kv {
|
|
LLM_KV_ATTENTION_SLIDING_WINDOW,
|
|
LLM_KV_ATTENTION_SCALE,
|
|
LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION,
|
|
+ LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS,
|
|
|
|
LLM_KV_ROPE_DIMENSION_COUNT,
|
|
LLM_KV_ROPE_FREQ_BASE,
|
|
@@ -439,6 +442,7 @@ static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
|
|
{ LLM_KV_ATTENTION_SLIDING_WINDOW, "%s.attention.sliding_window" },
|
|
{ LLM_KV_ATTENTION_SCALE, "%s.attention.scale" },
|
|
{ LLM_KV_ATTENTION_BLOCK_SKIP_CONNECTION, "%s.attention.block_skip_connection.%d" },
|
|
+ { LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, "%s.attention.cross_attention_layers" },
|
|
|
|
{ LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
|
|
{ LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
|
|
@@ -613,6 +617,14 @@ enum llm_tensor {
|
|
LLM_TENSOR_CLS,
|
|
LLM_TENSOR_CLS_OUT,
|
|
LLM_TENSOR_BSKCN_TV,
|
|
+ LLM_TENSOR_CROSS_ATTN_K_NORM,
|
|
+ LLM_TENSOR_CROSS_ATTN_K_PROJ,
|
|
+ LLM_TENSOR_CROSS_ATTN_O_PROJ,
|
|
+ LLM_TENSOR_CROSS_ATTN_Q_NORM,
|
|
+ LLM_TENSOR_CROSS_ATTN_Q_PROJ,
|
|
+ LLM_TENSOR_CROSS_ATTN_V_PROJ,
|
|
+ LLM_TENSOR_CROSS_ATTN_ATTN_GATE,
|
|
+ LLM_TENSOR_CROSS_ATTN_MLP_GATE,
|
|
};
|
|
|
|
static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
|
|
@@ -642,6 +654,40 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
|
{ LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
},
|
|
},
|
|
+ {
|
|
+ LLM_ARCH_MLLAMA,
|
|
+ {
|
|
+ { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
|
+ { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
|
+ { LLM_TENSOR_OUTPUT, "output" },
|
|
+ { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
|
|
+ { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
|
+ { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
|
+ { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
|
+ { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
|
+ { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
|
+ { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
|
|
+ { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
|
|
+ { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
|
+ { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
|
+ { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
|
+ { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
|
+ { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
|
|
+ { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
|
|
+ { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
|
|
+ { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
|
|
+ { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
|
|
+ { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_K_NORM, "blk.%d.cross_attn_k_norm" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_K_PROJ, "blk.%d.cross_attn_k_proj" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_O_PROJ, "blk.%d.cross_attn_o_proj" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_Q_NORM, "blk.%d.cross_attn_q_norm" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_Q_PROJ, "blk.%d.cross_attn_q_proj" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_V_PROJ, "blk.%d.cross_attn_v_proj" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_ATTN_GATE, "blk.%d.cross_attn_attn_gate" },
|
|
+ { LLM_TENSOR_CROSS_ATTN_MLP_GATE, "blk.%d.cross_attn_mlp_gate" },
|
|
+ },
|
|
+ },
|
|
{
|
|
LLM_ARCH_BAICHUAN,
|
|
{
|
|
@@ -2390,6 +2436,7 @@ enum e_model {
|
|
MODEL_40B,
|
|
MODEL_65B,
|
|
MODEL_70B,
|
|
+ MODEL_90B,
|
|
MODEL_236B,
|
|
MODEL_314B,
|
|
MODEL_SMALL,
|
|
@@ -2434,6 +2481,7 @@ struct llama_hparams {
|
|
std::array<uint32_t, LLAMA_MAX_LAYERS> n_ff_arr;
|
|
|
|
std::array<std::array<uint32_t, LLAMA_MAX_LAYERS>, 4> n_bskcn_arr;
|
|
+ std::array<uint32_t, LLAMA_MAX_LAYERS> cross_attn_layers;
|
|
|
|
uint32_t n_layer_dense_lead = 0;
|
|
uint32_t n_lora_q = 0;
|
|
@@ -2502,10 +2550,11 @@ struct llama_hparams {
|
|
if (this->n_expert != other.n_expert) return true;
|
|
if (this->n_expert_used != other.n_expert_used) return true;
|
|
|
|
- if (this->n_head_arr != other.n_head_arr) return true;
|
|
- if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
|
- if (this->n_ff_arr != other.n_ff_arr) return true;
|
|
- if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
|
+ if (this->n_head_arr != other.n_head_arr) return true;
|
|
+ if (this->n_head_kv_arr != other.n_head_kv_arr) return true;
|
|
+ if (this->n_ff_arr != other.n_ff_arr) return true;
|
|
+ if (this->n_bskcn_arr != other.n_bskcn_arr) return true;
|
|
+ if (this->cross_attn_layers != other.cross_attn_layers) return true;
|
|
|
|
if (this->n_rel_attn_bkts != other.n_rel_attn_bkts) return true;
|
|
if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
|
|
@@ -2623,6 +2672,10 @@ struct llama_hparams {
|
|
|
|
GGML_ABORT("fatal error");
|
|
}
|
|
+
|
|
+ bool cross_attention_layers(uint32_t il) const {
|
|
+ return std::find(cross_attn_layers.begin(), cross_attn_layers.end(), il) != cross_attn_layers.end();
|
|
+ }
|
|
};
|
|
|
|
static_assert(std::is_trivially_copyable<llama_hparams>::value, "llama_hparams must be trivially copyable");
|
|
@@ -2652,6 +2705,9 @@ struct llama_cparams {
|
|
bool offload_kqv;
|
|
bool flash_attn;
|
|
bool no_perf;
|
|
+ // TODO (jmorganca): this should most likely be passed in as part of a batch
|
|
+ // and not set on the context for all batches.
|
|
+ bool cross_attn = false;
|
|
|
|
enum llama_pooling_type pooling_type;
|
|
|
|
@@ -2806,6 +2862,16 @@ struct llama_layer {
|
|
struct ggml_tensor * ffn_down_scale;
|
|
|
|
struct ggml_tensor * bskcn_tv;
|
|
+
|
|
+ // cross attention
|
|
+ struct ggml_tensor * cross_attn_k_norm;
|
|
+ struct ggml_tensor * cross_attn_k_proj;
|
|
+ struct ggml_tensor * cross_attn_o_proj;
|
|
+ struct ggml_tensor * cross_attn_q_norm;
|
|
+ struct ggml_tensor * cross_attn_q_proj;
|
|
+ struct ggml_tensor * cross_attn_v_proj;
|
|
+ struct ggml_tensor * cross_attn_attn_gate;
|
|
+ struct ggml_tensor * cross_attn_mlp_gate;
|
|
};
|
|
|
|
// very similar to llama_batch,
|
|
@@ -3452,6 +3518,8 @@ struct llama_context {
|
|
struct ggml_tensor * inp_pos_bucket; // I32 [n_batch|n_kv, n_batch]
|
|
struct ggml_tensor * inp_embd_enc; // F32 [n_embd, n_outputs_enc]
|
|
struct ggml_tensor * inp_KQ_mask_cross; // F32 [n_outputs_enc, n_batch]
|
|
+
|
|
+ struct ggml_tensor * inp_cross_attn_state; // F32 [4, n_embd, 1061]
|
|
};
|
|
|
|
struct llama_lora_weight {
|
|
@@ -3686,6 +3754,18 @@ static bool llama_kv_cache_init(
|
|
cache.v_l.reserve(n_layer);
|
|
|
|
for (int i = 0; i < (int) n_layer; i++) {
|
|
+ // for cross attention layers
|
|
+ if (model.arch == LLM_ARCH_MLLAMA && hparams.cross_attention_layers(i)) {
|
|
+ struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
|
|
+ ggml_tensor * k = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_k, 6404, hparams.n_head_kv(i));
|
|
+ ggml_tensor * v = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, hparams.n_embd_head_v, 6404, hparams.n_head_kv(i));
|
|
+ ggml_format_name(k, "cache_k_l%d", i);
|
|
+ ggml_format_name(v, "cache_v_l%d", i);
|
|
+ cache.k_l.push_back(k);
|
|
+ cache.v_l.push_back(v);
|
|
+ continue;
|
|
+ }
|
|
+
|
|
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(i) + hparams.n_embd_k_s();
|
|
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(i) + hparams.n_embd_v_s();
|
|
|
|
@@ -5460,12 +5540,14 @@ static void llm_load_hparams(
|
|
}
|
|
|
|
// zero-out the per-layer hparams
|
|
- std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
|
- std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
|
- std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
|
+ std::fill(hparams.n_head_arr.begin(), hparams.n_head_arr.end(), 0);
|
|
+ std::fill(hparams.n_head_kv_arr.begin(), hparams.n_head_kv_arr.end(), 0);
|
|
+ std::fill(hparams.n_ff_arr.begin(), hparams.n_ff_arr.end(), 0);
|
|
+ std::fill(hparams.cross_attn_layers.begin(), hparams.cross_attn_layers.end(), -1);
|
|
|
|
- ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
|
- ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
|
+ ml.get_key_or_arr(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff_arr, hparams.n_layer);
|
|
+ ml.get_key_or_arr(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head_arr, hparams.n_layer);
|
|
+ ml.get_arr(LLM_KV_ATTENTION_CROSS_ATTENTION_LAYERS, hparams.cross_attn_layers, false);
|
|
|
|
// n_head_kv is optional, default to n_head
|
|
hparams.n_head_kv_arr = hparams.n_head_arr;
|
|
@@ -5514,7 +5596,7 @@ static void llm_load_hparams(
|
|
|
|
ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
|
|
|
|
- if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
|
|
+ if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_MLLAMA || model.arch == LLM_ARCH_FALCON) {
|
|
if (hparams.n_rot != hparams.n_embd_head_k) {
|
|
throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd_head_k));
|
|
}
|
|
@@ -5554,6 +5636,16 @@ static void llm_load_hparams(
|
|
}
|
|
}
|
|
} break;
|
|
+ case LLM_ARCH_MLLAMA:
|
|
+ {
|
|
+ ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
+
|
|
+ switch (hparams.n_layer) {
|
|
+ case 40: model.type = e_model::MODEL_11B; break;
|
|
+ case 100: model.type = e_model::MODEL_90B; break;
|
|
+ default: model.type = e_model::MODEL_UNKNOWN;
|
|
+ }
|
|
+ } break;
|
|
case LLM_ARCH_MINICPM:
|
|
{
|
|
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
|
@@ -7249,6 +7341,55 @@ static bool llm_load_tensors(
|
|
layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head_qk_rope/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
}
|
|
} break;
|
|
+ case LLM_ARCH_MLLAMA:
|
|
+ {
|
|
+ model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab+8});
|
|
+
|
|
+ // output
|
|
+ {
|
|
+ model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
|
+ model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
|
|
+
|
|
+ // if output is NULL, init from the input tok embed
|
|
+ if (model.output == NULL) {
|
|
+ model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
|
|
+ }
|
|
+ }
|
|
+
|
|
+ for (int i = 0; i < n_layer; ++i) {
|
|
+ ggml_context * ctx_layer = ctx_for_layer(i);
|
|
+ ggml_context * ctx_split = ctx_for_layer_split(i);
|
|
+
|
|
+ auto & layer = model.layers[i];
|
|
+
|
|
+ if (hparams.cross_attention_layers(i)) {
|
|
+ layer.cross_attn_k_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_NORM, "weight", i), {128});
|
|
+ layer.cross_attn_k_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_K_PROJ, "weight", i), {n_embd, 1024});
|
|
+ layer.cross_attn_o_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_O_PROJ, "weight", i), {n_embd, n_embd});
|
|
+ layer.cross_attn_q_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_NORM, "weight", i), {128});
|
|
+ layer.cross_attn_q_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_Q_PROJ, "weight", i), {n_embd, n_embd});
|
|
+ layer.cross_attn_v_proj = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_V_PROJ, "weight", i), {n_embd, 1024});
|
|
+ layer.cross_attn_attn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_ATTN_GATE, i), {1});
|
|
+ layer.cross_attn_mlp_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_CROSS_ATTN_MLP_GATE, i), {1});
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
+ } else {
|
|
+ layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
|
+ layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * n_head});
|
|
+ layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
|
|
+ layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
|
|
+ layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * n_head, n_embd});
|
|
+ layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
|
+ layer.rope_freqs = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FREQS, "weight"), {n_rot/2}, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
|
|
+ layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
|
+ layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
|
+ layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
|
+ }
|
|
+ }
|
|
+ } break;
|
|
case LLM_ARCH_GROK:
|
|
{
|
|
if (n_expert == 0) {
|
|
@@ -9093,7 +9234,7 @@ static int llama_model_load(const std::string & fname, llama_model & model, llam
|
|
|
|
if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
|
|
model.hparams.n_vocab != model.vocab.id_to_token.size()) {
|
|
- throw std::runtime_error("vocab size mismatch");
|
|
+ LLAMA_LOG_WARN("%s: vocab mismatch %u !- %zu ...\n", __func__, model.hparams.n_vocab, model.vocab.id_to_token.size());
|
|
}
|
|
|
|
if (params.vocab_only) {
|
|
@@ -9193,6 +9334,21 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|
return inpL;
|
|
}
|
|
|
|
+static struct ggml_tensor * llm_build_inp_cross_attn_state(
|
|
+ struct ggml_context * ctx,
|
|
+ struct llama_context & lctx,
|
|
+ const llama_hparams & hparams,
|
|
+ const llm_build_cb & cb) {
|
|
+ const int64_t n_embd = hparams.n_embd;
|
|
+
|
|
+ struct ggml_tensor * inpCAS = ggml_new_tensor_3d(ctx, GGML_TYPE_F32, n_embd, 1601, 4);
|
|
+ cb(inpCAS, "inp_cross_attn_state", -1);
|
|
+ ggml_set_input(inpCAS);
|
|
+ lctx.inp_cross_attn_state = inpCAS;
|
|
+
|
|
+ return inpCAS;
|
|
+}
|
|
+
|
|
static void llm_build_kv_store(
|
|
struct ggml_context * ctx,
|
|
const llama_hparams & hparams,
|
|
@@ -10167,6 +10323,7 @@ struct llm_build_context {
|
|
lctx.inp_pos_bucket = nullptr;
|
|
lctx.inp_embd_enc = nullptr;
|
|
lctx.inp_KQ_mask_cross = nullptr;
|
|
+ lctx.inp_cross_attn_state = nullptr;
|
|
}
|
|
|
|
void free() {
|
|
@@ -10754,6 +10911,239 @@ struct llm_build_context {
|
|
LLM_NORM_RMS, cb, -1);
|
|
cb(cur, "result_norm", -1);
|
|
|
|
+ cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
+ cb(cur, "result_output", -1);
|
|
+
|
|
+ ggml_build_forward_expand(gf, cur);
|
|
+
|
|
+ return gf;
|
|
+ }
|
|
+
|
|
+ struct ggml_cgraph * build_mllama() {
|
|
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, llama_model_max_nodes(model), false);
|
|
+
|
|
+ // mutable variable, needed during the last layer of the computation to skip unused tokens
|
|
+ int32_t n_tokens = this->n_tokens;
|
|
+
|
|
+ const int64_t n_embd_head = hparams.n_embd_head_v;
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
|
+ GGML_ASSERT(n_embd_head == hparams.n_rot);
|
|
+
|
|
+ struct ggml_tensor * cur;
|
|
+ struct ggml_tensor * inpL;
|
|
+ struct ggml_tensor * inpCAS;
|
|
+
|
|
+ inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
|
+ inpCAS = llm_build_inp_cross_attn_state(ctx0, lctx, hparams, cb);
|
|
+
|
|
+ // inp_pos - contains the positions
|
|
+ struct ggml_tensor * inp_pos = build_inp_pos();
|
|
+
|
|
+ // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
|
+ struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
|
|
+
|
|
+ for (int il = 0; il < n_layer; ++il) {
|
|
+ struct ggml_tensor * inpSA = inpL;
|
|
+
|
|
+ // norm
|
|
+ cur = llm_build_norm(ctx0, inpL, hparams,
|
|
+ model.layers[il].attn_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, il);
|
|
+ cb(cur, "attn_norm", il);
|
|
+
|
|
+ if (hparams.cross_attention_layers(il)) {
|
|
+ if (!batch.embd && !cparams.cross_attn) {
|
|
+ continue;
|
|
+ }
|
|
+
|
|
+ // cross attention layer
|
|
+ struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_q_proj, cur);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ Qcur = ggml_cont(ctx0, ggml_permute(ctx0, Qcur, 0, 2, 1, 3));
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ Qcur = llm_build_norm(ctx0, Qcur, hparams, model.layers[il].cross_attn_q_norm, NULL, LLM_NORM_RMS, cb, il);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ struct ggml_tensor * Kcur, * Vcur;
|
|
+ if (batch.embd) {
|
|
+ Kcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_k_proj, inpCAS);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, 6404);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ Kcur = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ Kcur = llm_build_norm(ctx0, Kcur, hparams, model.layers[il].cross_attn_k_norm, NULL, LLM_NORM_RMS, cb, il);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, kv_self.k_l[il]));
|
|
+
|
|
+ Vcur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_v_proj, inpCAS);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ Vcur = ggml_reshape_3d(ctx0, Vcur, n_embd_head, n_head_kv, 6404);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ Vcur = ggml_permute(ctx0, Vcur, 0, 2, 1, 3);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, kv_self.v_l[il]));
|
|
+ } else {
|
|
+ Kcur = ggml_view_tensor(ctx0, kv_self.k_l[il]);
|
|
+ cb(Kcur, "Kcur (view)", il);
|
|
+
|
|
+ Vcur = ggml_view_tensor(ctx0, kv_self.v_l[il]);
|
|
+ cb(Vcur, "Vcur (view)", il);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * kq = ggml_mul_mat(ctx0, Kcur, Qcur);
|
|
+ cb(kq, "kq", il);
|
|
+
|
|
+ // TODO: apply causal masks
|
|
+ struct ggml_tensor * kq_soft_max = ggml_soft_max_ext(ctx0, kq, nullptr, 1.f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
|
|
+ cb(kq_soft_max, "kq_soft_max", il);
|
|
+
|
|
+ Vcur = ggml_cont(ctx0, ggml_transpose(ctx0, Vcur));
|
|
+ cb(Vcur, "Vcur", il);
|
|
+
|
|
+ struct ggml_tensor * kqv = ggml_mul_mat(ctx0, Vcur, kq_soft_max);
|
|
+ cb(kqv, "kqv", il);
|
|
+
|
|
+ struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
|
|
+ cb(kqv_merged, "kqv_merged", il);
|
|
+
|
|
+ cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_head_v*n_head, n_tokens);
|
|
+ cb(cur, "kqv_merged_cont", il);
|
|
+
|
|
+ cur = ggml_mul_mat(ctx0, model.layers[il].cross_attn_o_proj, cur);
|
|
+ cb(cur, "cur", il);
|
|
+
|
|
+ // TODO: do this in place once?
|
|
+ cur = ggml_mul(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_attn_gate));
|
|
+
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
+
|
|
+ // feed-forward network
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, il);
|
|
+ cb(cur, "ffn_norm", il);
|
|
+
|
|
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
+ NULL,
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ // TODO: do this inplace once?
|
|
+ cur = ggml_add_inplace(ctx0, ggml_mul_inplace(ctx0, cur, ggml_tanh(ctx0, model.layers[il].cross_attn_mlp_gate)), ffn_inp);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
+ cb(cur, "l_out", il);
|
|
+
|
|
+ // input for next layer
|
|
+ inpL = cur;
|
|
+ } else {
|
|
+ // self attention layer
|
|
+
|
|
+ // rope freq factors for llama3; may return nullptr for llama2 and other models
|
|
+ struct ggml_tensor * rope_factors = build_rope_factors(il);
|
|
+
|
|
+ // compute Q and K and RoPE them
|
|
+ struct ggml_tensor * Qcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wq, cur);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ if (model.layers[il].bq) {
|
|
+ Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
|
+ cb(Qcur, "Qcur", il);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * Kcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wk, cur);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ if (model.layers[il].bk) {
|
|
+ Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
|
+ cb(Kcur, "Kcur", il);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * Vcur = llm_build_lora_mm(lctx, ctx0, model.layers[il].wv, cur);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ if (model.layers[il].bv) {
|
|
+ Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
|
+ cb(Vcur, "Vcur", il);
|
|
+ }
|
|
+
|
|
+ Qcur = ggml_rope_ext(
|
|
+ ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+ cb(Qcur, "Qcur", il);
|
|
+
|
|
+ Kcur = ggml_rope_ext(
|
|
+ ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, rope_factors,
|
|
+ n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
|
|
+ ext_factor, attn_factor, beta_fast, beta_slow
|
|
+ );
|
|
+ cb(Kcur, "Kcur", il);
|
|
+
|
|
+ cur = llm_build_kv(ctx0, lctx, kv_self, gf,
|
|
+ model.layers[il].wo, model.layers[il].bo,
|
|
+ Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
|
+
|
|
+
|
|
+ if (il == n_layer - 1) {
|
|
+ // skip computing output for unused tokens
|
|
+ struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
|
+ n_tokens = n_outputs;
|
|
+ cur = ggml_get_rows(ctx0, cur, inp_out_ids);
|
|
+ inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
|
|
+ }
|
|
+
|
|
+ struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
|
+ cb(ffn_inp, "ffn_inp", il);
|
|
+
|
|
+ // feed-forward network
|
|
+ cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
|
+ model.layers[il].ffn_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, il);
|
|
+ cb(cur, "ffn_norm", il);
|
|
+
|
|
+ cur = llm_build_ffn(ctx0, lctx, cur,
|
|
+ model.layers[il].ffn_up, model.layers[il].ffn_up_b, NULL,
|
|
+ model.layers[il].ffn_gate, model.layers[il].ffn_gate_b, NULL,
|
|
+ model.layers[il].ffn_down, model.layers[il].ffn_down_b, NULL,
|
|
+ NULL,
|
|
+ LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = ggml_add(ctx0, cur, ffn_inp);
|
|
+ cb(cur, "ffn_out", il);
|
|
+
|
|
+ cur = lctx.cvec.apply_to(ctx0, cur, il);
|
|
+ cb(cur, "l_out", il);
|
|
+
|
|
+ // input for next layer
|
|
+ inpL = cur;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ cur = inpL;
|
|
+
|
|
+ cur = llm_build_norm(ctx0, cur, hparams,
|
|
+ model.output_norm, NULL,
|
|
+ LLM_NORM_RMS, cb, -1);
|
|
+ cb(cur, "result_norm", -1);
|
|
+
|
|
// lm_head
|
|
cur = llm_build_lora_mm(lctx, ctx0, model.output, cur);
|
|
cb(cur, "result_output", -1);
|
|
@@ -16501,6 +16891,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|
{
|
|
result = llm.build_llama();
|
|
} break;
|
|
+ case LLM_ARCH_MLLAMA:
|
|
+ {
|
|
+ result = llm.build_mllama();
|
|
+ } break;
|
|
case LLM_ARCH_BAICHUAN:
|
|
{
|
|
result = llm.build_baichuan();
|
|
@@ -16761,10 +17155,19 @@ static void llama_set_inputs(llama_context & lctx, const llama_ubatch & batch) {
|
|
}
|
|
|
|
if (batch.embd) {
|
|
- const int64_t n_embd = hparams.n_embd;
|
|
- const int64_t n_tokens = batch.n_tokens;
|
|
+ if (lctx.inp_cross_attn_state && lctx.inp_cross_attn_state->buffer) {
|
|
+ ggml_backend_tensor_set(lctx.inp_cross_attn_state, batch.embd, 0, ggml_nbytes(lctx.inp_cross_attn_state));
|
|
+ // zero out inp_embd since it's not used
|
|
+ float * inp_embd_data = (float *)lctx.inp_embd->data;
|
|
+ for (int i = 0; i < ggml_nelements(lctx.inp_embd); ++i) {
|
|
+ inp_embd_data[i] = 0.0f;
|
|
+ }
|
|
+ } else {
|
|
+ const int64_t n_embd = hparams.n_embd;
|
|
+ const int64_t n_tokens = batch.n_tokens;
|
|
|
|
- ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
|
+ ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
|
|
+ }
|
|
}
|
|
|
|
if (batch.pos && lctx.inp_pos) {
|
|
@@ -17345,7 +17748,7 @@ static int llama_decode_internal(
|
|
n_outputs = 1;
|
|
}
|
|
|
|
- lctx.sbatch.from_batch(batch_all, n_embd,
|
|
+ lctx.sbatch.from_batch(batch_all, batch_all.n_embd,
|
|
/* simple_split */ !kv_self.recurrent,
|
|
/* logits_all */ n_outputs == n_tokens_all);
|
|
|
|
@@ -17638,7 +18041,7 @@ static int llama_encode_internal(
|
|
|
|
const int64_t n_embd = hparams.n_embd;
|
|
|
|
- lctx.sbatch.from_batch(batch, n_embd, /* simple_split */ true, /* logits_all */ true);
|
|
+ lctx.sbatch.from_batch(batch, batch.n_embd, /* simple_split */ true, /* logits_all */ true);
|
|
|
|
const llama_ubatch ubatch = lctx.sbatch.split_simple(n_tokens);
|
|
|
|
@@ -18648,7 +19051,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|
if (llama_model_has_encoder(&model)) {
|
|
n_attn_layer *= 3;
|
|
}
|
|
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
|
+ if (qs.n_attention_wv != n_attn_layer) {
|
|
+ LLAMA_LOG_WARN("%s: n_attention_wv is unexpected, expected: %d, found: %d\n", __func__, n_attn_layer, qs.n_attention_wv);
|
|
+ }
|
|
}
|
|
|
|
size_t total_size_org = 0;
|
|
@@ -19814,6 +20219,7 @@ enum llama_rope_type llama_rope_type(const struct llama_model * model) {
|
|
|
|
// use what we call a normal RoPE, operating on pairs of consecutive head values
|
|
case LLM_ARCH_LLAMA:
|
|
+ case LLM_ARCH_MLLAMA:
|
|
case LLM_ARCH_BAICHUAN:
|
|
case LLM_ARCH_STARCODER:
|
|
case LLM_ARCH_PLAMO:
|
|
@@ -21230,6 +21636,10 @@ void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
|
|
ctx->cparams.causal_attn = causal_attn;
|
|
}
|
|
|
|
+void llama_set_cross_attention(struct llama_context * ctx, bool cross_attention) {
|
|
+ ctx->cparams.cross_attn = cross_attention;
|
|
+}
|
|
+
|
|
struct llama_batch llama_batch_get_one(
|
|
llama_token * tokens,
|
|
int32_t n_tokens,
|
|
@@ -21239,6 +21649,7 @@ struct llama_batch llama_batch_get_one(
|
|
/*n_tokens =*/ n_tokens,
|
|
/*tokens =*/ tokens,
|
|
/*embd =*/ nullptr,
|
|
+ /*n_embd =*/ 0,
|
|
/*pos =*/ nullptr,
|
|
/*n_seq_id =*/ nullptr,
|
|
/*seq_id =*/ nullptr,
|
|
@@ -21254,6 +21665,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
|
/*n_tokens =*/ 0,
|
|
/*tokens =*/ nullptr,
|
|
/*embd =*/ nullptr,
|
|
+ /*n_embd =*/ 0,
|
|
/*pos =*/ nullptr,
|
|
/*n_seq_id =*/ nullptr,
|
|
/*seq_id =*/ nullptr,
|
|
@@ -21265,6 +21677,7 @@ struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_
|
|
|
|
if (embd) {
|
|
batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
|
|
+ batch.n_embd = embd;
|
|
} else {
|
|
batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
|
|
}
|