//go:build linux || windows package gpu /* #cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm #cgo windows LDFLAGS: -lpthread #include "gpu_info.h" */ import "C" import ( "fmt" "log/slog" "os" "path/filepath" "runtime" "strconv" "strings" "sync" "unsafe" "github.com/ollama/ollama/format" ) type handles struct { nvml *C.nvml_handle_t cudart *C.cudart_handle_t } const ( cudaMinimumMemory = 457 * format.MebiByte rocmMinimumMemory = 457 * format.MebiByte ) var gpuMutex sync.Mutex // With our current CUDA compile flags, older than 5.0 will not work properly var CudaComputeMin = [2]C.int{5, 0} // Possible locations for the nvidia-ml library var NvmlLinuxGlobs = []string{ "/usr/local/cuda/lib64/libnvidia-ml.so*", "/usr/lib/x86_64-linux-gnu/nvidia/current/libnvidia-ml.so*", "/usr/lib/x86_64-linux-gnu/libnvidia-ml.so*", "/usr/lib/wsl/lib/libnvidia-ml.so*", "/usr/lib/wsl/drivers/*/libnvidia-ml.so*", "/opt/cuda/lib64/libnvidia-ml.so*", "/usr/lib*/libnvidia-ml.so*", "/usr/lib/aarch64-linux-gnu/nvidia/current/libnvidia-ml.so*", "/usr/lib/aarch64-linux-gnu/libnvidia-ml.so*", "/usr/local/lib*/libnvidia-ml.so*", // TODO: are these stubs ever valid? "/opt/cuda/targets/x86_64-linux/lib/stubs/libnvidia-ml.so*", } var NvmlWindowsGlobs = []string{ "c:\\Windows\\System32\\nvml.dll", } var CudartLinuxGlobs = []string{ "/usr/local/cuda/lib64/libcudart.so*", "/usr/lib/x86_64-linux-gnu/nvidia/current/libcudart.so*", "/usr/lib/x86_64-linux-gnu/libcudart.so*", "/usr/lib/wsl/lib/libcudart.so*", "/usr/lib/wsl/drivers/*/libcudart.so*", "/opt/cuda/lib64/libcudart.so*", "/usr/local/cuda*/targets/aarch64-linux/lib/libcudart.so*", "/usr/lib/aarch64-linux-gnu/nvidia/current/libcudart.so*", "/usr/lib/aarch64-linux-gnu/libcudart.so*", "/usr/local/cuda/lib*/libcudart.so*", "/usr/lib*/libcudart.so*", "/usr/local/lib*/libcudart.so*", } var CudartWindowsGlobs = []string{ "c:\\Program Files\\NVIDIA GPU Computing Toolkit\\CUDA\\v*\\bin\\cudart64_*.dll", } // Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed. // Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices. var CudaTegra string = os.Getenv("JETSON_JETPACK") // Note: gpuMutex must already be held func initGPUHandles() *handles { // TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing gpuHandles := &handles{nil, nil} var nvmlMgmtName string var nvmlMgmtPatterns []string var cudartMgmtName string var cudartMgmtPatterns []string tmpDir, _ := PayloadsDir() switch runtime.GOOS { case "windows": nvmlMgmtName = "nvml.dll" nvmlMgmtPatterns = make([]string, len(NvmlWindowsGlobs)) copy(nvmlMgmtPatterns, NvmlWindowsGlobs) cudartMgmtName = "cudart64_*.dll" localAppData := os.Getenv("LOCALAPPDATA") cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", cudartMgmtName)} cudartMgmtPatterns = append(cudartMgmtPatterns, CudartWindowsGlobs...) case "linux": nvmlMgmtName = "libnvidia-ml.so" nvmlMgmtPatterns = make([]string, len(NvmlLinuxGlobs)) copy(nvmlMgmtPatterns, NvmlLinuxGlobs) cudartMgmtName = "libcudart.so*" if tmpDir != "" { // TODO - add "payloads" for subprocess cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", cudartMgmtName)} } cudartMgmtPatterns = append(cudartMgmtPatterns, CudartLinuxGlobs...) default: return gpuHandles } slog.Info("Detecting GPU type") cudartLibPaths := FindGPULibs(cudartMgmtName, cudartMgmtPatterns) if len(cudartLibPaths) > 0 { cudart := LoadCUDARTMgmt(cudartLibPaths) if cudart != nil { slog.Info("Nvidia GPU detected via cudart") gpuHandles.cudart = cudart return gpuHandles } } // TODO once we build confidence, remove this and the gpu_info_nvml.[ch] files nvmlLibPaths := FindGPULibs(nvmlMgmtName, nvmlMgmtPatterns) if len(nvmlLibPaths) > 0 { nvml := LoadNVMLMgmt(nvmlLibPaths) if nvml != nil { slog.Info("Nvidia GPU detected via nvidia-ml") gpuHandles.nvml = nvml return gpuHandles } } return gpuHandles } func GetGPUInfo() GpuInfo { // TODO - consider exploring lspci (and equivalent on windows) to check for // GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries gpuMutex.Lock() defer gpuMutex.Unlock() gpuHandles := initGPUHandles() defer func() { if gpuHandles.nvml != nil { C.nvml_release(*gpuHandles.nvml) } if gpuHandles.cudart != nil { C.cudart_release(*gpuHandles.cudart) } }() // All our GPU builds on x86 have AVX enabled, so fallback to CPU if we don't detect at least AVX cpuVariant := GetCPUVariant() if cpuVariant == "" && runtime.GOARCH == "amd64" { slog.Warn("CPU does not have AVX or AVX2, disabling GPU support.") } var memInfo C.mem_info_t resp := GpuInfo{} if gpuHandles.nvml != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") { C.nvml_check_vram(*gpuHandles.nvml, &memInfo) if memInfo.err != nil { slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU memory: %s", C.GoString(memInfo.err))) C.free(unsafe.Pointer(memInfo.err)) } else if memInfo.count > 0 { // Verify minimum compute capability var cc C.nvml_compute_capability_t C.nvml_compute_capability(*gpuHandles.nvml, &cc) if cc.err != nil { slog.Info(fmt.Sprintf("[nvidia-ml] error looking up NVML GPU compute capability: %s", C.GoString(cc.err))) C.free(unsafe.Pointer(cc.err)) } else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) { slog.Info(fmt.Sprintf("[nvidia-ml] NVML CUDA Compute Capability detected: %d.%d", cc.major, cc.minor)) resp.Library = "cuda" resp.MinimumMemory = cudaMinimumMemory } else { slog.Info(fmt.Sprintf("[nvidia-ml] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor)) } } } else if gpuHandles.cudart != nil && (cpuVariant != "" || runtime.GOARCH != "amd64") { C.cudart_check_vram(*gpuHandles.cudart, &memInfo) if memInfo.err != nil { slog.Info(fmt.Sprintf("[cudart] error looking up CUDART GPU memory: %s", C.GoString(memInfo.err))) C.free(unsafe.Pointer(memInfo.err)) } else if memInfo.count > 0 { // Verify minimum compute capability var cc C.cudart_compute_capability_t C.cudart_compute_capability(*gpuHandles.cudart, &cc) if cc.err != nil { slog.Info(fmt.Sprintf("[cudart] error looking up CUDA compute capability: %s", C.GoString(cc.err))) C.free(unsafe.Pointer(cc.err)) } else if cc.major > CudaComputeMin[0] || (cc.major == CudaComputeMin[0] && cc.minor >= CudaComputeMin[1]) { slog.Info(fmt.Sprintf("[cudart] CUDART CUDA Compute Capability detected: %d.%d", cc.major, cc.minor)) resp.Library = "cuda" resp.MinimumMemory = cudaMinimumMemory } else { slog.Info(fmt.Sprintf("[cudart] CUDA GPU is too old. Falling back to CPU mode. Compute Capability detected: %d.%d", cc.major, cc.minor)) } } } else { AMDGetGPUInfo(&resp) if resp.Library != "" { resp.MinimumMemory = rocmMinimumMemory return resp } } if resp.Library == "" { C.cpu_check_ram(&memInfo) resp.Library = "cpu" resp.Variant = cpuVariant } if memInfo.err != nil { slog.Info(fmt.Sprintf("error looking up CPU memory: %s", C.GoString(memInfo.err))) C.free(unsafe.Pointer(memInfo.err)) return resp } resp.DeviceCount = uint32(memInfo.count) resp.FreeMemory = uint64(memInfo.free) resp.TotalMemory = uint64(memInfo.total) return resp } func getCPUMem() (memInfo, error) { var ret memInfo var info C.mem_info_t C.cpu_check_ram(&info) if info.err != nil { defer C.free(unsafe.Pointer(info.err)) return ret, fmt.Errorf(C.GoString(info.err)) } ret.FreeMemory = uint64(info.free) ret.TotalMemory = uint64(info.total) return ret, nil } func CheckVRAM() (uint64, error) { userLimit := os.Getenv("OLLAMA_MAX_VRAM") if userLimit != "" { avail, err := strconv.ParseInt(userLimit, 10, 64) if err != nil { return 0, fmt.Errorf("Invalid OLLAMA_MAX_VRAM setting %s: %s", userLimit, err) } slog.Info(fmt.Sprintf("user override OLLAMA_MAX_VRAM=%d", avail)) return uint64(avail), nil } gpuInfo := GetGPUInfo() if gpuInfo.FreeMemory > 0 && (gpuInfo.Library == "cuda" || gpuInfo.Library == "rocm") { return gpuInfo.FreeMemory, nil } return 0, fmt.Errorf("no GPU detected") // TODO - better handling of CPU based memory determiniation } func FindGPULibs(baseLibName string, patterns []string) []string { // Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them var ldPaths []string gpuLibPaths := []string{} slog.Info(fmt.Sprintf("Searching for GPU management library %s", baseLibName)) switch runtime.GOOS { case "windows": ldPaths = strings.Split(os.Getenv("PATH"), ";") case "linux": ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":") default: return gpuLibPaths } // Start with whatever we find in the PATH/LD_LIBRARY_PATH for _, ldPath := range ldPaths { d, err := filepath.Abs(ldPath) if err != nil { continue } patterns = append(patterns, filepath.Join(d, baseLibName+"*")) } slog.Debug(fmt.Sprintf("gpu management search paths: %v", patterns)) for _, pattern := range patterns { // Ignore glob discovery errors matches, _ := filepath.Glob(pattern) for _, match := range matches { // Resolve any links so we don't try the same lib multiple times // and weed out any dups across globs libPath := match tmp := match var err error for ; err == nil; tmp, err = os.Readlink(libPath) { if !filepath.IsAbs(tmp) { tmp = filepath.Join(filepath.Dir(libPath), tmp) } libPath = tmp } new := true for _, cmp := range gpuLibPaths { if cmp == libPath { new = false break } } if new { gpuLibPaths = append(gpuLibPaths, libPath) } } } slog.Info(fmt.Sprintf("Discovered GPU libraries: %v", gpuLibPaths)) return gpuLibPaths } func LoadNVMLMgmt(nvmlLibPaths []string) *C.nvml_handle_t { var resp C.nvml_init_resp_t resp.ch.verbose = getVerboseState() for _, libPath := range nvmlLibPaths { lib := C.CString(libPath) defer C.free(unsafe.Pointer(lib)) C.nvml_init(lib, &resp) if resp.err != nil { slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err))) C.free(unsafe.Pointer(resp.err)) } else { return &resp.ch } } return nil } func LoadCUDARTMgmt(cudartLibPaths []string) *C.cudart_handle_t { var resp C.cudart_init_resp_t resp.ch.verbose = getVerboseState() for _, libPath := range cudartLibPaths { lib := C.CString(libPath) defer C.free(unsafe.Pointer(lib)) C.cudart_init(lib, &resp) if resp.err != nil { slog.Info(fmt.Sprintf("Unable to load cudart CUDA management library %s: %s", libPath, C.GoString(resp.err))) C.free(unsafe.Pointer(resp.err)) } else { return &resp.ch } } return nil } func getVerboseState() C.uint16_t { if debug := os.Getenv("OLLAMA_DEBUG"); debug != "" { return C.uint16_t(1) } return C.uint16_t(0) }