package server import ( "context" "errors" "fmt" "log/slog" "reflect" "runtime" "sort" "strings" "sync" "time" "github.com/ollama/ollama/api" "github.com/ollama/ollama/envconfig" "github.com/ollama/ollama/format" "github.com/ollama/ollama/gpu" "github.com/ollama/ollama/llm" ) type LlmRequest struct { ctx context.Context //nolint:containedctx model *Model opts api.Options origNumCtx int // Track the initial ctx request sessionDuration *api.Duration successCh chan *runnerRef errCh chan error schedAttempts uint } type Scheduler struct { pendingReqCh chan *LlmRequest finishedReqCh chan *LlmRequest expiredCh chan *runnerRef unloadedCh chan interface{} loaded map[string]*runnerRef loadedMu sync.Mutex loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options, numParallel int) (llm.LlamaServer, error) getGpuFn func() gpu.GpuInfoList getCpuFn func() gpu.GpuInfoList reschedDelay time.Duration } // Default automatic value for number of models we allow per GPU // Model will still need to fit in VRAM, but loading many small models // on a large GPU can cause stalling var defaultModelsPerGPU = 3 // Default automatic value for parallel setting // Model will still need to fit in VRAM. If this setting wont fit // we'll back off down to 1 to try to get it to fit var defaultParallel = 4 var ErrMaxQueue = fmt.Errorf("server busy, please try again. maximum pending requests exceeded") func InitScheduler(ctx context.Context) *Scheduler { sched := &Scheduler{ pendingReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests), finishedReqCh: make(chan *LlmRequest, envconfig.MaxQueuedRequests), expiredCh: make(chan *runnerRef, envconfig.MaxQueuedRequests), unloadedCh: make(chan interface{}, envconfig.MaxQueuedRequests), loaded: make(map[string]*runnerRef), newServerFn: llm.NewLlamaServer, getGpuFn: gpu.GetGPUInfo, getCpuFn: gpu.GetCPUInfo, reschedDelay: 250 * time.Millisecond, } sched.loadFn = sched.load return sched } // context must be canceled to decrement ref count and release the runner func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration *api.Duration) (chan *runnerRef, chan error) { if opts.NumCtx < 4 { opts.NumCtx = 4 } req := &LlmRequest{ ctx: c, model: model, opts: opts, sessionDuration: sessionDuration, successCh: make(chan *runnerRef), errCh: make(chan error, 1), } select { case s.pendingReqCh <- req: default: req.errCh <- ErrMaxQueue } return req.successCh, req.errCh } // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done func (s *Scheduler) Run(ctx context.Context) { slog.Debug("starting llm scheduler") go func() { s.processPending(ctx) }() go func() { s.processCompleted(ctx) }() } func (s *Scheduler) processPending(ctx context.Context) { for { select { case <-ctx.Done(): slog.Debug("shutting down scheduler pending loop") return case pending := <-s.pendingReqCh: // Block other requests until we get this pending request running pending.schedAttempts++ if pending.origNumCtx == 0 { pending.origNumCtx = pending.opts.NumCtx } if pending.ctx.Err() != nil { slog.Debug("pending request cancelled or timed out, skipping scheduling") continue } numParallel := envconfig.NumParallel // TODO (jmorganca): multimodal models don't support parallel yet // see https://github.com/ollama/ollama/issues/4165 if len(pending.model.ProjectorPaths) > 0 && numParallel != 1 { numParallel = 1 slog.Warn("multimodal models don't support parallel requests yet") } for { cpus := s.getCpuFn() var systemMem gpu.GpuInfo if len(cpus) > 0 { systemMem = cpus[0] } var runnerToExpire *runnerRef s.loadedMu.Lock() runner := s.loaded[pending.model.ModelPath] loadedCount := len(s.loaded) s.loadedMu.Unlock() if runner != nil { if runner.needsReload(ctx, pending) { runnerToExpire = runner } else { // Runner is usable, return it pending.useLoadedRunner(runner, s.finishedReqCh) break } } else if envconfig.MaxRunners > 0 && loadedCount >= envconfig.MaxRunners { slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount) runnerToExpire = s.findRunnerToUnload() } else { // Either no models are loaded or below envconfig.MaxRunners // Get a refreshed GPU list var gpus gpu.GpuInfoList if pending.opts.NumGPU == 0 { gpus = s.getCpuFn() } else { gpus = s.getGpuFn() } if envconfig.MaxRunners <= 0 { // No user specified MaxRunners, so figure out what automatic setting to use // If all GPUs have reliable free memory reporting, defaultModelsPerGPU * the number of GPUs // if any GPU has unreliable free memory reporting, 1x the number of GPUs allReliable := true for _, gpu := range gpus { if gpu.UnreliableFreeMemory { allReliable = false break } } if allReliable { envconfig.MaxRunners = defaultModelsPerGPU * len(gpus) slog.Debug("updating default concurrency", "OLLAMA_MAX_LOADED_MODELS", envconfig.MaxRunners, "gpu_count", len(gpus)) } else { slog.Info("one or more GPUs detected that are unable to accurately report free memory - disabling default concurrency") envconfig.MaxRunners = len(gpus) } } // Load model for fitting ggml, err := llm.LoadModel(pending.model.ModelPath, 0) if err != nil { pending.errCh <- err break } estimate := llm.EstimateGPULayers(gpus, ggml, pending.model.ProjectorPaths, pending.opts) maxSize := systemMem.FreeMemory // Add available GPU memory to the total pool // macOS hardware has unified memory so don't double count if runtime.GOOS != "darwin" { for _, gpu := range gpus { if gpu.Library == "cpu" { continue } if loadedCount == 0 { // If no other models are loaded, set the limit based on what's available maxSize += gpu.FreeMemory } else { // Other models could be unloaded, favor total memory for limit maxSize += gpu.TotalMemory } } } // Block attempting to load a model larger than system memory + GPU memory if estimate.TotalSize > maxSize { slog.Warn("model request too large for system", "requested", format.HumanBytes2(estimate.TotalSize), "system", format.HumanBytes2(maxSize)) // Linux will crash if over-allocating memory - return an error to the user. // TODO (jmorganca): add reasonable upper limits for darwin and windows as well if runtime.GOOS == "linux" { pending.errCh <- fmt.Errorf("requested model (%s) is too large for this system (%s)", format.HumanBytes2(estimate.TotalSize), format.HumanBytes2(maxSize)) break } } // Evaluate if the model will fit in the available system memory, or if we should unload a model first if len(gpus) == 1 && gpus[0].Library == "cpu" { // simplifying assumption of defaultParallel when in CPU mode if numParallel <= 0 { numParallel = defaultParallel } pending.opts.NumCtx = pending.origNumCtx * numParallel if loadedCount == 0 { slog.Debug("cpu mode with first model, loading") s.loadFn(pending, ggml, gpus, numParallel) break } runnerToExpire = s.maybeFindCPURunnerToUnload(pending, ggml, gpus) if runnerToExpire == nil { slog.Debug("cpu mode with available system memory or first model, loading") s.loadFn(pending, ggml, gpus, numParallel) break } // else we need to expire a runner } else if loadedCount == 0 { // No models loaded. Load the model but prefer the best fit. slog.Debug("loading first model", "model", pending.model.ModelPath) g := pickBestFitGPUs(pending, ggml, gpus, &numParallel) if g != nil { gpus = g } s.loadFn(pending, ggml, gpus, numParallel) break } if runnerToExpire == nil { // More than one loaded model, so we have to see if the // new one fits // // We want to avoid loading on any GPUs that have other // models still loading on them to avoid potential races // with VRAM consumption ramping up during load availGpus := s.filterGPUsWithoutLoadingModels(gpus) // Update free memory from currently loaded models s.updateFreeSpace(availGpus) fitGpus := pickBestFitGPUs(pending, ggml, availGpus, &numParallel) if fitGpus != nil { slog.Debug("new model fits with existing models, loading") s.loadFn(pending, ggml, fitGpus, numParallel) break } // We couldn't find a set of GPUs to fully load the new // model. If no other models are loading (both GPU lists // are the same) then we need to unload another model to // make room if len(availGpus) < len(gpus) { // There are other requests pending, and this one // needs more time, so put it on the back of the // queue so that we might satisfy other pending // requests that aren't blocked go func() { // Process in a go routine to avoid deadlocking // the scheduler if our queue is full slog.Debug("delaying scheduling while other models finish loading", "attempts", pending.schedAttempts, "model", pending.model.ModelPath) time.Sleep(s.reschedDelay) s.pendingReqCh <- pending }() break } runnerToExpire = s.findRunnerToUnload() } } if runnerToExpire == nil { // Shouildn't happen slog.Error("runner to expire was nil!") continue } // Trigger an expiration to unload once it's done runnerToExpire.refMu.Lock() slog.Debug("resetting model to expire immediately to make room", "modelPath", runnerToExpire.modelPath, "refCount", runnerToExpire.refCount) if runnerToExpire.expireTimer != nil { runnerToExpire.expireTimer.Stop() runnerToExpire.expireTimer = nil } runnerToExpire.sessionDuration = 0 if runnerToExpire.refCount <= 0 { s.expiredCh <- runnerToExpire } runnerToExpire.refMu.Unlock() // Wait for the unload to happen // Note: at this point we're queueing up all incoming requests, even if they were for // a different model that's loaded and not scheduled to be removed. slog.Debug("waiting for pending requests to complete and unload to occur", "modelPath", runnerToExpire.modelPath) select { case <-ctx.Done(): slog.Debug("shutting down scheduler pending loop") return case <-s.unloadedCh: slog.Debug("unload completed", "modelPath", runnerToExpire.modelPath) continue } } case <-s.unloadedCh: // An unload request when there are no pending request can be ignored slog.Debug("ignoring unload event with no pending requests") } } } func (s *Scheduler) processCompleted(ctx context.Context) { // Process completed requests, expired timers, and unloading models for { select { case <-ctx.Done(): slog.Debug("shutting down scheduler completed loop") return case finished := <-s.finishedReqCh: s.loadedMu.Lock() runner := s.loaded[finished.model.ModelPath] s.loadedMu.Unlock() if runner == nil { slog.Error("finished request signal received after model unloaded", "modelPath", finished.model.ModelPath) continue } runner.refMu.Lock() runner.refCount-- if runner.refCount <= 0 { if runner.sessionDuration <= 0 { slog.Debug("runner with zero duration has gone idle, expiring to unload", "modelPath", runner.modelPath) if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } s.expiredCh <- runner } else if runner.expireTimer == nil { slog.Debug("runner with non-zero duration has gone idle, adding timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration) runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() { slog.Debug("timer expired, expiring to unload", "modelPath", runner.modelPath) runner.refMu.Lock() defer runner.refMu.Unlock() if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } s.expiredCh <- runner }) runner.expiresAt = time.Now().Add(runner.sessionDuration) } else { slog.Debug("runner with non-zero duration has gone idle, resetting timer", "modelPath", runner.modelPath, "duration", runner.sessionDuration) runner.expireTimer.Reset(runner.sessionDuration) runner.expiresAt = time.Now().Add(runner.sessionDuration) } } slog.Debug("after processing request finished event", "modelPath", runner.modelPath, "refCount", runner.refCount) runner.refMu.Unlock() case runner := <-s.expiredCh: slog.Debug("runner expired event received", "modelPath", runner.modelPath) runner.refMu.Lock() if runner.refCount > 0 { // Shouldn't happen, but safeguard to ensure no leaked runners slog.Debug("expired event with positive ref count, retrying", "modelPath", runner.modelPath, "refCount", runner.refCount) go func(runner *runnerRef) { // We can't unload yet, but want to as soon as the current request completes // So queue up another expired event time.Sleep(10 * time.Millisecond) s.expiredCh <- runner }(runner) runner.refMu.Unlock() continue } s.loadedMu.Lock() slog.Debug("got lock to unload", "modelPath", runner.modelPath) finished := runner.waitForVRAMRecovery() runner.unload() delete(s.loaded, runner.modelPath) s.loadedMu.Unlock() slog.Debug("runner released", "modelPath", runner.modelPath) runner.refMu.Unlock() <-finished slog.Debug("sending an unloaded event", "modelPath", runner.modelPath) s.unloadedCh <- struct{}{} } } } // Complete the pending request and send the runner back to the requester // Wires up a finished event after the request context is completed // Updates session duration, and resets expiration timer func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) { runner.refMu.Lock() defer runner.refMu.Unlock() runner.refCount++ if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } if pending.sessionDuration != nil { runner.sessionDuration = pending.sessionDuration.Duration } pending.successCh <- runner go func() { <-pending.ctx.Done() slog.Debug("context for request finished") finished <- pending }() } func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel int) { if numParallel < 1 { numParallel = 1 } sessionDuration := envconfig.KeepAlive if req.sessionDuration != nil { sessionDuration = req.sessionDuration.Duration } llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts, numParallel) if err != nil { // some older models are not compatible with newer versions of llama.cpp // show a generalized compatibility error until there is a better way to // check for model compatibility if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") { err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName) } slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err) req.errCh <- err return } runner := &runnerRef{ model: req.model, modelPath: req.model.ModelPath, llama: llama, Options: &req.opts, sessionDuration: sessionDuration, gpus: gpus, estimatedVRAM: llama.EstimatedVRAM(), estimatedTotal: llama.EstimatedTotal(), loading: true, refCount: 1, } runner.numParallel = numParallel runner.refMu.Lock() s.loadedMu.Lock() s.loaded[req.model.ModelPath] = runner slog.Info("loaded runners", "count", len(s.loaded)) s.loadedMu.Unlock() go func() { defer runner.refMu.Unlock() if err = llama.WaitUntilRunning(req.ctx); err != nil { slog.Error("error loading llama server", "error", err) runner.refCount-- req.errCh <- err slog.Debug("triggering expiration for failed load", "model", runner.modelPath) s.expiredCh <- runner return } slog.Debug("finished setting up runner", "model", req.model.ModelPath) runner.loading = false go func() { <-req.ctx.Done() slog.Debug("context for request finished") s.finishedReqCh <- req }() req.successCh <- runner }() } func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) { type predKey struct { Library string ID string } predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners s.loadedMu.Lock() for _, r := range s.loaded { r.refMu.Lock() if r.llama != nil { for _, gpu := range allGpus { predMap[predKey{gpu.Library, gpu.ID}] += r.llama.EstimatedVRAMByGPU(gpu.ID) } } else { slog.Warn("unexpected nil runner reference, memory prediction may be incorrect") } r.refMu.Unlock() } s.loadedMu.Unlock() // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list for i := range allGpus { if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok { slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory)) if p > allGpus[i].TotalMemory { // Shouldn't happen slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p) allGpus[i].FreeMemory = 0 } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p } slog.Info("updated VRAM based on existing loaded models", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory)) } } } // While models are loading the VRAM consumption numbers will be indeterminate, so we have // to avoid scheduling another model on the same GPU(s) that haven't stabilized. // This routine returns the set of GPUs that do not have an active loading model. // If all GPUs have loading models, an empty list will be returned (not a single CPU entry) func (s *Scheduler) filterGPUsWithoutLoadingModels(allGpus gpu.GpuInfoList) gpu.GpuInfoList { ret := append(gpu.GpuInfoList{}, allGpus...) s.loadedMu.Lock() defer s.loadedMu.Unlock() for _, runner := range s.loaded { if runner.loading { slog.Debug("overlapping loads detected", "gpus", runner.gpus, "model", runner.modelPath) for _, busyGPU := range runner.gpus { for i := range ret { if ret[i].ID == busyGPU.ID { ret = append(ret[:i], ret[i+1:]...) break } } } } } return ret } // TODO consolidate sched_types.go type runnerRef struct { refMu sync.Mutex // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount refCount uint // prevent unloading if > 0 // unloading bool // set to true when we are trying to unload the runner llama llm.LlamaServer loading bool // True only during initial load, then false forever gpus gpu.GpuInfoList // Recorded at time of provisioning estimatedVRAM uint64 estimatedTotal uint64 sessionDuration time.Duration expireTimer *time.Timer expiresAt time.Time model *Model modelPath string numParallel int *api.Options } // The refMu must already be held when calling unload func (runner *runnerRef) unload() { if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } if runner.llama != nil { runner.llama.Close() } runner.model = nil runner.llama = nil runner.Options = nil runner.gpus = nil } func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool { slog.Debug("evaluating already loaded", "model", req.model.ModelPath) runner.refMu.Lock() defer runner.refMu.Unlock() timeout := 10 * time.Second if runner.loading { timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems... } if runner.Options == nil { return true } // Don't reload runner if num_gpu=-1 was provided optsExisting := runner.Options.Runner optsNew := req.opts.Runner if optsNew.NumGPU < 0 { optsExisting.NumGPU = -1 optsNew.NumGPU = -1 } // Normalize the NumCtx for parallelism optsExisting.NumCtx = optsExisting.NumCtx / runner.numParallel ctx, cancel := context.WithTimeout(ctx, timeout) defer cancel() if !reflect.DeepEqual(runner.model.AdapterPaths, req.model.AdapterPaths) || // have the adapters changed? !reflect.DeepEqual(runner.model.ProjectorPaths, req.model.ProjectorPaths) || // have the projectors changed? !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed? runner.llama.Ping(ctx) != nil { return true } return false } // Free memory reporting on GPUs can lag for a while even after the runner // exits, so we have to keep checking until we see the available memory recover, // otherwise subsequent model loads will get far less layers loaded or worse // case, may completely fall back to CPU mode. // This routine must be called before the runner unloads so it can establish // a before and after GPU memory allocation. The returned channel // will be notified when we're done waiting, or have timed out and should // proceed anyway func (runner *runnerRef) waitForVRAMRecovery() chan interface{} { finished := make(chan interface{}, 1) // CPU or Metal don't need checking, so no waiting required // windows can page VRAM, only cuda currently can report accurate used vram usage if len(runner.gpus) == 0 || (len(runner.gpus) == 1 && (runner.gpus[0].Library == "cpu" || runner.gpus[0].Library == "metal")) || (runtime.GOOS == "windows" && runner.gpus[0].Library != "cuda") { finished <- struct{}{} return finished } start := time.Now() // Establish a baseline before we unload gpusBefore := gpu.GetGPUInfo() var totalMemoryBefore, freeMemoryBefore uint64 for _, gpu := range gpusBefore { totalMemoryBefore += gpu.TotalMemory freeMemoryBefore += gpu.FreeMemory } go func() { expiresAt := start.Add(5 * time.Second) // typical convergence is 0.5-1.5s ticker := time.NewTicker(250 * time.Millisecond) defer ticker.Stop() for { <-ticker.C if time.Now().After(expiresAt) { slog.Warn("gpu VRAM usage didn't recover within timeout", "seconds", time.Since(start).Seconds(), "model", runner.modelPath) finished <- struct{}{} } // Query GPUs, look for free to go back up gpusNow := gpu.GetGPUInfo() var totalMemoryNow, freeMemoryNow uint64 for _, gpu := range gpusNow { totalMemoryNow += gpu.TotalMemory freeMemoryNow += gpu.FreeMemory } // If we're within ~80% of the estimated memory usage recovered, bail out if float32(freeMemoryNow-freeMemoryBefore) > float32(runner.estimatedVRAM)*0.8 { slog.Debug(fmt.Sprintf("gpu VRAM free memory converged after %0.2f seconds", time.Since(start).Seconds()), "model", runner.modelPath) finished <- struct{}{} return } } }() return finished } type ByDuration []*runnerRef func (a ByDuration) Len() int { return len(a) } func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a ByDuration) Less(i, j int) bool { // uint64 to turn negative time (never unload) to largest return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration) } // TODO - future consideration to pick runners based on size // type BySize []*runnerRef // func (a BySize) Len() int { return len(a) } // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM } // pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits // If the model can not be fit fully within the available GPU(s) nil is returned // If numParallel is <= 0, this will attempt try to optimize parallism based on available VRAM, and adjust // opts.NumCtx accordingly func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList { var estimatedVRAM uint64 var numParallelToTry []int if *numParallel <= 0 { // If no specific parallel setting was provided, try larger then smaller, always end with 1 numParallelToTry = append(numParallelToTry, defaultParallel, 1) } else { numParallelToTry = []int{*numParallel} } for _, gl := range gpus.ByLibrary() { var ok bool sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...) // TODO - potentially sort by performance capability, existing models loaded, etc. // TODO - Eliminate any GPUs that already have envconfig.MaxRunners loaded on them // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl))) // First attempt to fit the model into a single GPU for _, p := range numParallelToTry { req.opts.NumCtx = req.origNumCtx * p if !envconfig.SchedSpread { for _, g := range sgl { if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { slog.Info("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "parallel", p, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM)) *numParallel = p return []gpu.GpuInfo{g} } } } } // TODO future refinements // - if multiple Libraries, see if any single GPU in any Library will fit // - try subsets of GPUs instead of just falling back to 1 or all in a family // Now try all the GPUs for _, p := range numParallelToTry { req.opts.NumCtx = req.origNumCtx * p if ok, estimatedVRAM = llm.PredictServerFit(sgl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { slog.Info("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", sgl[0].Library, "parallel", p, "required", format.HumanBytes2(estimatedVRAM)) *numParallel = p return sgl } } } return nil } // findRunnerToUnload finds a runner to unload to make room for a new model func (s *Scheduler) findRunnerToUnload() *runnerRef { s.loadedMu.Lock() runnerList := make([]*runnerRef, 0, len(s.loaded)) for _, r := range s.loaded { runnerList = append(runnerList, r) } s.loadedMu.Unlock() if len(runnerList) == 0 { slog.Debug("no loaded runner to unload") return nil } // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload // e.g., if we have multiple options, will one make room for the request? sort.Sort(ByDuration(runnerList)) // First try to find a runner that's already idle for _, runner := range runnerList { runner.refMu.Lock() rc := runner.refCount runner.refMu.Unlock() if rc == 0 { slog.Debug("found an idle runner to unload") return runner } } // None appear idle, just wait for the one with the shortest duration slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList)) return runnerList[0] } func (s *Scheduler) unloadAllRunners() { s.loadedMu.Lock() defer s.loadedMu.Unlock() for model, runner := range s.loaded { if runner.llama != nil { slog.Debug("shutting down runner", "model", model) runner.llama.Close() } } } // If other runners are loaded, make sure the pending request will fit in system memory // If not, pick a runner to unload, else return nil and the request can be loaded func (s *Scheduler) maybeFindCPURunnerToUnload(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) *runnerRef { slog.Debug("evaluating if CPU model load will fit in available system memory") estimate := llm.EstimateGPULayers(gpus, ggml, req.model.ProjectorPaths, req.opts) if estimate.TotalSize <= gpus[0].FreeMemory { slog.Debug("cpu inference mode, model fits in available system memory", "model", format.HumanBytes2(estimate.TotalSize), "available", format.HumanBytes2(gpus[0].FreeMemory)) return nil } // TODO - optimization: try to find CPU only runners first, or partial offloads with enough in system memory to make room return s.findRunnerToUnload() }