from langchain.document_loaders import OnlinePDFLoader from langchain.vectorstores import Chroma from langchain.embeddings import GPT4AllEmbeddings from langchain import PromptTemplate from langchain.llms import Ollama from langchain.callbacks.manager import CallbackManager from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler from langchain.chains import RetrievalQA import sys import os class SuppressStdout: def __enter__(self): self._original_stdout = sys.stdout self._original_stderr = sys.stderr sys.stdout = open(os.devnull, 'w') sys.stderr = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout.close() sys.stdout = self._original_stdout sys.stderr = self._original_stderr # load the pdf and split it into chunks loader = OnlinePDFLoader("https://d18rn0p25nwr6d.cloudfront.net/CIK-0001813756/975b3e9b-268e-4798-a9e4-2a9a7c92dc10.pdf") data = loader.load() from langchain.text_splitter import RecursiveCharacterTextSplitter text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=0) all_splits = text_splitter.split_documents(data) with SuppressStdout(): vectorstore = Chroma.from_documents(documents=all_splits, embedding=GPT4AllEmbeddings()) while True: query = input("\nQuery: ") if query == "exit": break if query.strip() == "": continue # Prompt template = """Use the following pieces of context to answer the question at the end. If you don't know the answer, just say that you don't know, don't try to make up an answer. Use three sentences maximum and keep the answer as concise as possible. {context} Question: {question} Helpful Answer:""" QA_CHAIN_PROMPT = PromptTemplate( input_variables=["context", "question"], template=template, ) llm = Ollama(model="llama2:13b", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()])) qa_chain = RetrievalQA.from_chain_type( llm, retriever=vectorstore.as_retriever(), chain_type_kwargs={"prompt": QA_CHAIN_PROMPT}, ) result = qa_chain({"query": query})