ollama
# Ollama [![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama) Get up and running with large language models locally. ### macOS [Download](https://ollama.ai/download/Ollama-darwin.zip) ### Windows Coming soon! For now, you can install Ollama on Windows via WSL2. ### Linux & WSL2 ``` curl https://ollama.ai/install.sh | sh ``` [Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md) ### Docker The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub. ### Libraries - [ollama-python](https://github.com/ollama/ollama-python) - [ollama-js](https://github.com/ollama/ollama-js) ## Quickstart To run and chat with [Llama 2](https://ollama.ai/library/llama2): ``` ollama run llama2 ``` ## Model library Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library 'ollama model library') Here are some example open-source models that can be downloaded: | Model | Parameters | Size | Download | | ------------------ | ---------- | ----- | ------------------------------ | | Llama 2 | 7B | 3.8GB | `ollama run llama2` | | Mistral | 7B | 4.1GB | `ollama run mistral` | | Dolphin Phi | 2.7B | 1.6GB | `ollama run dolphin-phi` | | Phi-2 | 2.7B | 1.7GB | `ollama run phi` | | Neural Chat | 7B | 4.1GB | `ollama run neural-chat` | | Starling | 7B | 4.1GB | `ollama run starling-lm` | | Code Llama | 7B | 3.8GB | `ollama run codellama` | | Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` | | Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` | | Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` | | Orca Mini | 3B | 1.9GB | `ollama run orca-mini` | | Vicuna | 7B | 3.8GB | `ollama run vicuna` | | LLaVA | 7B | 4.5GB | `ollama run llava` | > Note: You should have at least 8 GB of RAM available to run the 7B models, 16 GB to run the 13B models, and 32 GB to run the 33B models. ## Customize a model ### Import from GGUF Ollama supports importing GGUF models in the Modelfile: 1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import. ``` FROM ./vicuna-33b.Q4_0.gguf ``` 2. Create the model in Ollama ``` ollama create example -f Modelfile ``` 3. Run the model ``` ollama run example ``` ### Import from PyTorch or Safetensors See the [guide](docs/import.md) on importing models for more information. ### Customize a prompt Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model: ``` ollama pull llama2 ``` Create a `Modelfile`: ``` FROM llama2 # set the temperature to 1 [higher is more creative, lower is more coherent] PARAMETER temperature 1 # set the system message SYSTEM """ You are Mario from Super Mario Bros. Answer as Mario, the assistant, only. """ ``` Next, create and run the model: ``` ollama create mario -f ./Modelfile ollama run mario >>> hi Hello! It's your friend Mario. ``` For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation. ## CLI Reference ### Create a model `ollama create` is used to create a model from a Modelfile. ``` ollama create mymodel -f ./Modelfile ``` ### Pull a model ``` ollama pull llama2 ``` > This command can also be used to update a local model. Only the diff will be pulled. ### Remove a model ``` ollama rm llama2 ``` ### Copy a model ``` ollama cp llama2 my-llama2 ``` ### Multiline input For multiline input, you can wrap text with `"""`: ``` >>> """Hello, ... world! ... """ I'm a basic program that prints the famous "Hello, world!" message to the console. ``` ### Multimodal models ``` >>> What's in this image? /Users/jmorgan/Desktop/smile.png The image features a yellow smiley face, which is likely the central focus of the picture. ``` ### Pass in prompt as arguments ``` $ ollama run llama2 "Summarize this file: $(cat README.md)" Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. ``` ### List models on your computer ``` ollama list ``` ### Start Ollama `ollama serve` is used when you want to start ollama without running the desktop application. ## Building Install `cmake` and `go`: ``` brew install cmake go ``` Then generate dependencies: ``` go generate ./... ``` Then build the binary: ``` go build . ``` More detailed instructions can be found in the [developer guide](https://github.com/jmorganca/ollama/blob/main/docs/development.md) ### Running local builds Next, start the server: ``` ./ollama serve ``` Finally, in a separate shell, run a model: ``` ./ollama run llama2 ``` ## REST API Ollama has a REST API for running and managing models. ### Generate a response ``` curl http://localhost:11434/api/generate -d '{ "model": "llama2", "prompt":"Why is the sky blue?" }' ``` ### Chat with a model ``` curl http://localhost:11434/api/chat -d '{ "model": "mistral", "messages": [ { "role": "user", "content": "why is the sky blue?" } ] }' ``` See the [API documentation](./docs/api.md) for all endpoints. ## Community Integrations ### Web & Desktop - [Bionic GPT](https://github.com/bionic-gpt/bionic-gpt) - [HTML UI](https://github.com/rtcfirefly/ollama-ui) - [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama) - [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file) - [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui) - [Web UI](https://github.com/ollama-webui/ollama-webui) - [Ollamac](https://github.com/kevinhermawan/Ollamac) - [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md) - [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core) - [Amica](https://github.com/semperai/amica) - [chatd](https://github.com/BruceMacD/chatd) - [Ollama-SwiftUI](https://github.com/kghandour/Ollama-SwiftUI) - [MindMac](https://mindmac.app) ### Terminal - [oterm](https://github.com/ggozad/oterm) - [Ellama Emacs client](https://github.com/s-kostyaev/ellama) - [Emacs client](https://github.com/zweifisch/ollama) - [gen.nvim](https://github.com/David-Kunz/gen.nvim) - [ollama.nvim](https://github.com/nomnivore/ollama.nvim) - [ogpt.nvim](https://github.com/huynle/ogpt.nvim) - [gptel Emacs client](https://github.com/karthink/gptel) - [Oatmeal](https://github.com/dustinblackman/oatmeal) - [cmdh](https://github.com/pgibler/cmdh) ### Database - [MindsDB](https://github.com/mindsdb/mindsdb/blob/staging/mindsdb/integrations/handlers/ollama_handler/README.md) ### Package managers - [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/) ### Libraries - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa) - [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example) - [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html) - [LiteLLM](https://github.com/BerriAI/litellm) - [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp) - [Ollama for Ruby](https://github.com/gbaptista/ollama-ai) - [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs) - [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j) - [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama) - [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit) - [Ollama for Dart](https://github.com/breitburg/dart-ollama) - [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel) - [LangChainDart](https://github.com/davidmigloz/langchain_dart) - [Semantic Kernel - Python](https://github.com/microsoft/semantic-kernel/tree/main/python/semantic_kernel/connectors/ai/ollama) - [Haystack](https://github.com/deepset-ai/haystack-integrations/blob/main/integrations/ollama.md) - [Ollama for R - rollama](https://github.com/JBGruber/rollama) ### Mobile - [Enchanted](https://github.com/AugustDev/enchanted) - [Maid](https://github.com/Mobile-Artificial-Intelligence/maid) ### Extensions & Plugins - [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama) - [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel) - [Continue](https://github.com/continuedev/continue) - [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama) - [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq) - [Dagger Chatbot](https://github.com/samalba/dagger-chatbot) - [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot) - [Ollama Telegram Bot](https://github.com/ruecat/ollama-telegram) - [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation) - [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama) - [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama) - [Obsidian BMO Chatbot plugin](https://github.com/longy2k/obsidian-bmo-chatbot) - [Open Interpreter](https://docs.openinterpreter.com/language-model-setup/local-models/ollama) - [twinny](https://github.com/rjmacarthy/twinny) (Copilot and Copilot chat alternative using Ollama)