diff --git a/src/llama.cpp b/src/llama.cpp index 4c0a1bb6..17e5bc2a 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -16928,7 +16928,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead - const bool has_logits = !cparams.embeddings; + const bool has_logits = cparams.causal_attn; const bool has_embd = cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE); const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; @@ -17200,20 +17200,23 @@ static int llama_decode_internal( // no output res = nullptr; embd = nullptr; - } else if (cparams.embeddings) { - res = nullptr; // do not extract logits for embedding case - embd = nullptr; - for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) { + } + + if (cparams.embeddings) { + for (int i = ggml_graph_n_nodes(gf) - 1; i >= 0; --i) { + embd = ggml_graph_node(gf, i); if (strcmp(ggml_graph_node(gf, i)->name, "result_embd_pooled") == 0) { - embd = ggml_graph_node(gf, i); break; } } - GGML_ASSERT(embd != nullptr && "missing embeddings tensor"); } else { embd = nullptr; // do not extract embeddings when not needed GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); } + + if (!cparams.causal_attn) { + res = nullptr; // do not extract logits when not needed + } // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); ggml_backend_sched_alloc_graph(lctx.sched, gf);