package llm import ( "fmt" "log/slog" "os" "strconv" "github.com/ollama/ollama/api" "github.com/ollama/ollama/format" "github.com/ollama/ollama/gpu" ) // This algorithm looks for a complete fit to determine if we need to unload other models func PredictServerFit(allGpus gpu.GpuInfoList, ggml *GGML, adapters, projectors []string, opts api.Options) (bool, uint64) { var estimatedVRAM uint64 if opts.NumCtx > int(ggml.KV().ContextLength()) { slog.Warn("requested context length is greater than model max context length", "requested", opts.NumCtx, "model", ggml.KV().ContextLength()) opts.NumCtx = int(ggml.KV().ContextLength()) } if opts.NumCtx < 4 { opts.NumCtx = 4 } // Split up the GPUs by type and try them for _, gpus := range allGpus.ByLibrary() { var layerCount int layerCount, estimatedVRAM = EstimateGPULayers(gpus, ggml, projectors, opts) if opts.NumGPU < 0 { if layerCount > 0 && layerCount >= int(ggml.KV().BlockCount()+1) { return true, estimatedVRAM } } else { if layerCount > 0 && layerCount >= opts.NumGPU { return true, estimatedVRAM } } } return false, estimatedVRAM } // Given a model and one or more GPU targets, predict how many layers and bytes we can load // The GPUs provided must all be the same Library func EstimateGPULayers(gpus []gpu.GpuInfo, ggml *GGML, projectors []string, opts api.Options) (int, uint64) { if gpus[0].Library == "cpu" { return 0, 0 } var memoryAvailable uint64 for _, info := range gpus { memoryAvailable += info.FreeMemory } userLimit := os.Getenv("OLLAMA_MAX_VRAM") if userLimit != "" { avail, err := strconv.ParseUint(userLimit, 10, 64) if err != nil { slog.Error("invalid setting, ignoring", "OLLAMA_MAX_VRAM", userLimit, "error", err) } else { slog.Info("user override memory limit", "OLLAMA_MAX_VRAM", avail, "actual", memoryAvailable) memoryAvailable = avail } } slog.Debug("evaluating", "library", gpus[0].Library, "gpu_count", len(gpus), "available", format.HumanBytes2(memoryAvailable)) // TODO - this is probably wrong, first GPU vs secondaries will have different overheads memoryMinimum := gpus[0].MinimumMemory for _, projector := range projectors { memoryMinimum += projectorMemoryRequirements(projector) // multimodal models require at least 2048 context opts.NumCtx = max(opts.NumCtx, 2048) } // fp16 k,v = (1 (k) + 1 (v)) * sizeof(float16) * n_ctx * n_layer * n_embd / n_head * n_head_kv var kv uint64 = 2 * 2 * uint64(opts.NumCtx) * ggml.KV().BlockCount() * ggml.KV().EmbeddingLength() / ggml.KV().HeadCount() * ggml.KV().HeadCountKV() graphPartialOffload, graphFullOffload := ggml.GraphSize(uint64(opts.NumCtx), uint64(min(opts.NumCtx, opts.NumBatch))) if graphPartialOffload == 0 { graphPartialOffload = ggml.KV().GQA() * kv / 6 } if graphFullOffload == 0 { graphFullOffload = graphPartialOffload } graphFullOffload *= uint64(len(gpus)) graphPartialOffload *= uint64(len(gpus)) // memoryRequiredTotal represents the memory required for full GPU offloading (all layers) memoryRequiredTotal := memoryMinimum + graphFullOffload // memoryRequiredPartial represents the memory required for partial GPU offloading (n > 0, n < layers) memoryRequiredPartial := memoryMinimum + graphPartialOffload if memoryRequiredPartial > memoryAvailable { slog.Debug("insufficient VRAM to load any model layers") return 0, 0 } layers := ggml.Tensors().Layers() var memoryLayerOutput uint64 for k, v := range layers { if k == "output" || k == "output_norm" { memoryLayerOutput += v.size() } } if gpus[0].Library == "metal" && opts.UseMMap { // memory is preallocated for output tensors memoryRequiredTotal += memoryLayerOutput memoryRequiredPartial += memoryLayerOutput } var layerCount int for i := 0; i < int(ggml.KV().BlockCount()); i++ { memoryLayer := layers[fmt.Sprintf("blk.%d", i)].size() // KV is proportional to the number of layers memoryLayer += kv / ggml.KV().BlockCount() memoryRequiredTotal += memoryLayer if memoryAvailable > memoryRequiredPartial+memoryLayer { memoryRequiredPartial += memoryLayer layerCount++ } } if gpus[0].Library != "metal" || !opts.UseMMap { // memory was not preallocated for output tensors memoryRequiredTotal += memoryLayerOutput } if memoryAvailable > memoryRequiredTotal { layerCount = int(ggml.KV().BlockCount()) + 1 memoryRequiredPartial = memoryRequiredTotal } memoryWeights := memoryRequiredTotal - memoryMinimum - graphFullOffload - kv slog.Info( "offload to gpu", slog.Group( "layers", // actual number of layers offloaded "real", opts.NumGPU, // estimated number of layers that can be offloaded "estimate", layerCount, ), slog.Group( "memory", // memory available for offloading "available", format.HumanBytes2(memoryAvailable), slog.Group( "required", // memory required for full offloading "full", format.HumanBytes2(memoryRequiredTotal), // memory required to offload layers.estimate layers "partial", format.HumanBytes2(memoryRequiredPartial), // memory of KV cache "kv", format.HumanBytes2(kv), ), slog.Group( "weights", // memory of the weights "total", format.HumanBytes2(memoryWeights), // memory of repeating layers "repeating", format.HumanBytes2(memoryWeights-memoryLayerOutput), // memory of non-repeating layers "nonrepeating", format.HumanBytes2(memoryLayerOutput), ), slog.Group( "graph", // memory of graph when fully offloaded "full", format.HumanBytes2(graphFullOffload), // memory of graph when not fully offloaded "partial", format.HumanBytes2(graphPartialOffload), ), ), ) return layerCount, uint64(memoryRequiredPartial) }