/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "mmvq.cuh" #include "vecdotq.cuh" typedef float (*vec_dot_q_cuda_t)(const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & kbx, const int & iqs); static constexpr __device__ vec_dot_q_cuda_t get_vec_dot_q_cuda(ggml_type type) { return type == GGML_TYPE_Q4_0 ? vec_dot_q4_0_q8_1 : type == GGML_TYPE_Q4_1 ? vec_dot_q4_1_q8_1 : type == GGML_TYPE_Q5_0 ? vec_dot_q5_0_q8_1 : type == GGML_TYPE_Q5_1 ? vec_dot_q5_1_q8_1 : type == GGML_TYPE_Q8_0 ? vec_dot_q8_0_q8_1 : type == GGML_TYPE_Q2_K ? vec_dot_q2_K_q8_1 : type == GGML_TYPE_Q3_K ? vec_dot_q3_K_q8_1 : type == GGML_TYPE_Q4_K ? vec_dot_q4_K_q8_1 : type == GGML_TYPE_Q5_K ? vec_dot_q5_K_q8_1 : type == GGML_TYPE_Q6_K ? vec_dot_q6_K_q8_1 : type == GGML_TYPE_IQ2_XXS ? vec_dot_iq2_xxs_q8_1 : type == GGML_TYPE_IQ2_XS ? vec_dot_iq2_xs_q8_1 : type == GGML_TYPE_IQ2_S ? vec_dot_iq2_s_q8_1 : type == GGML_TYPE_IQ3_XXS ? vec_dot_iq3_xxs_q8_1 : type == GGML_TYPE_IQ1_S ? vec_dot_iq1_s_q8_1 : type == GGML_TYPE_IQ1_M ? vec_dot_iq1_m_q8_1 : type == GGML_TYPE_IQ4_NL ? vec_dot_iq4_nl_q8_1 : type == GGML_TYPE_IQ4_XS ? vec_dot_iq4_xs_q8_1 : type == GGML_TYPE_IQ3_S ? vec_dot_iq3_s_q8_1 : nullptr; } static constexpr __device__ int get_vdr_mmvq(ggml_type type) { return type == GGML_TYPE_Q4_0 ? VDR_Q4_0_Q8_1_MMVQ : type == GGML_TYPE_Q4_1 ? VDR_Q4_1_Q8_1_MMVQ : type == GGML_TYPE_Q5_0 ? VDR_Q5_0_Q8_1_MMVQ : type == GGML_TYPE_Q5_1 ? VDR_Q5_1_Q8_1_MMVQ : type == GGML_TYPE_Q8_0 ? VDR_Q8_0_Q8_1_MMVQ : type == GGML_TYPE_Q2_K ? VDR_Q2_K_Q8_1_MMVQ : type == GGML_TYPE_Q3_K ? VDR_Q3_K_Q8_1_MMVQ : type == GGML_TYPE_Q4_K ? VDR_Q4_K_Q8_1_MMVQ : type == GGML_TYPE_Q5_K ? VDR_Q5_K_Q8_1_MMVQ : type == GGML_TYPE_Q6_K ? VDR_Q6_K_Q8_1_MMVQ : type == GGML_TYPE_IQ2_XXS ? VDR_IQ2_XXS_Q8_1_MMVQ : type == GGML_TYPE_IQ2_XS ? VDR_IQ2_XS_Q8_1_MMVQ : type == GGML_TYPE_IQ2_S ? VDR_IQ2_S_Q8_1_MMVQ : type == GGML_TYPE_IQ3_XXS ? VDR_IQ3_XXS_Q8_1_MMVQ : type == GGML_TYPE_IQ3_S ? VDR_IQ3_S_Q8_1_MMVQ : type == GGML_TYPE_IQ4_NL ? VDR_IQ4_NL_Q8_1_MMVQ : type == GGML_TYPE_IQ4_XS ? VDR_IQ4_XS_Q8_1_MMVQ : 1; } template #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) // tell the compiler to use as many registers as it wants, see nwarps definition below __launch_bounds__((ncols_y <= 4 ? 4 : 2)*WARP_SIZE, 1) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) static __global__ void mul_mat_vec_q( const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst, const int ncols_x, const int nrows_x, const int nrows_y, const int nrows_dst) { constexpr int qk = ggml_cuda_type_traits::qk; constexpr int qi = ggml_cuda_type_traits::qi; constexpr int vdr = get_vdr_mmvq(type); constexpr vec_dot_q_cuda_t vec_dot_q_cuda = get_vec_dot_q_cuda(type); #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && (defined(RDNA2) || defined(RDNA3)) constexpr int nwarps = 1; constexpr int rows_per_cuda_block = 1; #else constexpr int nwarps = ncols_y <= 4 ? 4 : 2; constexpr int rows_per_cuda_block = ncols_y == 1 ? 1 : 2; #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) && !defined(RDNA2) && !defined(RDNA3) const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; const int row0 = rows_per_cuda_block*blockIdx.x; const int blocks_per_row_x = ncols_x / qk; const int blocks_per_col_y = nrows_y / QK8_1; constexpr int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi; // partial sum for each thread float tmp[ncols_y][rows_per_cuda_block] = {0.0f}; const block_q8_1 * y = (const block_q8_1 *) vy; for (int kbx = tid / (qi/vdr); kbx < blocks_per_row_x; kbx += blocks_per_iter) { const int kby = kbx * (qk/QK8_1); // y block index that aligns with kbx // x block quant index when casting the quants to int const int kqs = vdr * (tid % (qi/vdr)); #pragma unroll for (int j = 0; j < ncols_y; ++j) { #pragma unroll for (int i = 0; i < rows_per_cuda_block; ++i) { tmp[j][i] += vec_dot_q_cuda(vx, &y[j*blocks_per_col_y + kby], (row0 + i)*blocks_per_row_x + kbx, kqs); } } } __shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y][rows_per_cuda_block][WARP_SIZE]; if (threadIdx.y > 0) { #pragma unroll for (int j = 0; j < ncols_y; ++j) { #pragma unroll for (int i = 0; i < rows_per_cuda_block; ++i) { tmp_shared[threadIdx.y-1][j][i][threadIdx.x] = tmp[j][i]; } } } __syncthreads(); if (threadIdx.y > 0) { return; } // sum up partial sums and write back result #pragma unroll for (int j = 0; j < ncols_y; ++j) { #pragma unroll for (int i = 0; i < rows_per_cuda_block; ++i) { #pragma unroll for (int l = 0; l < nwarps-1; ++l) { tmp[j][i] += tmp_shared[l][j][i][threadIdx.x]; } tmp[j][i] = warp_reduce_sum(tmp[j][i]); } if (threadIdx.x < rows_per_cuda_block && (rows_per_cuda_block == 1 || row0 + threadIdx.x < nrows_dst)) { dst[j*nrows_dst + row0 + threadIdx.x] = tmp[j][threadIdx.x]; } } } template static void mul_mat_vec_q_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { GGML_ASSERT(ncols_x % ggml_blck_size(type) == 0); GGML_ASSERT(ncols_y <= MMVQ_MAX_BATCH_SIZE); int id = ggml_cuda_get_device(); int64_t nwarps = 1; int64_t rows_per_cuda_block = 1; if (ggml_cuda_info().devices[id].cc < CC_RDNA2) { // NVIDIA and AMD older than RDNA2 switch(ncols_y) { case 1: nwarps = 4; rows_per_cuda_block = 1; break; case 2: case 3: case 4: nwarps = 4; rows_per_cuda_block = 2; break; case 5: case 6: case 7: case 8: nwarps = 2; rows_per_cuda_block = 2; break; default: GGML_ABORT("fatal error"); break; } } const int64_t nblocks = (nrows_x + rows_per_cuda_block - 1) / rows_per_cuda_block; const dim3 block_nums(nblocks, 1, 1); const dim3 block_dims(WARP_SIZE, nwarps, 1); switch (ncols_y) { case 1: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 2: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 3: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 4: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 5: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 6: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 7: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; case 8: mul_mat_vec_q<<>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, nrows_dst); break; default: GGML_ABORT("fatal error"); break; } } static void mul_mat_vec_q4_0_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q4_1_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q5_0_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q5_1_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q8_0_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q2_K_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q3_K_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q4_K_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q5_K_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_q6_K_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq2_xxs_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq2_xs_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq2_s_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq3_xxs_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq1_s_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq1_m_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq4_nl_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq4_xs_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } static void mul_mat_vec_iq3_s_q8_1_cuda( const void * vx, const void * vy, float * dst, const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) { mul_mat_vec_q_cuda(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst, stream); } void ggml_cuda_op_mul_mat_vec_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream) { const int64_t ne00 = src0->ne[0]; const int64_t row_diff = row_high - row_low; const int64_t ne10 = src1->ne[0]; GGML_ASSERT(ne10 % QK8_1 == 0); const int64_t ne0 = dst->ne[0]; int id = ggml_cuda_get_device(); // the main device has a larger memory buffer to hold the results from all GPUs // nrows_dst == nrows of the matrix that the kernel writes into const int64_t nrows_dst = id == ctx.device ? ne0 : row_diff; switch (src0->type) { case GGML_TYPE_Q4_0: mul_mat_vec_q4_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q4_1: mul_mat_vec_q4_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q5_0: mul_mat_vec_q5_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q5_1: mul_mat_vec_q5_1_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q8_0: mul_mat_vec_q8_0_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q2_K: mul_mat_vec_q2_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q3_K: mul_mat_vec_q3_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q4_K: mul_mat_vec_q4_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q5_K: mul_mat_vec_q5_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_Q6_K: mul_mat_vec_q6_K_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ2_XXS: mul_mat_vec_iq2_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ2_XS: mul_mat_vec_iq2_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ2_S: mul_mat_vec_iq2_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ3_XXS: mul_mat_vec_iq3_xxs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ1_S: mul_mat_vec_iq1_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ1_M: mul_mat_vec_iq1_m_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ4_NL: mul_mat_vec_iq4_nl_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ4_XS: mul_mat_vec_iq4_xs_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; case GGML_TYPE_IQ3_S: mul_mat_vec_iq3_s_q8_1_cuda(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream); break; default: GGML_ABORT("fatal error"); break; } GGML_UNUSED(src1); GGML_UNUSED(dst); GGML_UNUSED(src1_ddf_i); GGML_UNUSED(src1_ncols); GGML_UNUSED(src1_padded_row_size); }