package llama //go:generate make -j 8 /* #cgo CFLAGS: -O2 -std=c11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE #cgo CXXFLAGS: -O2 -std=c++11 -DGGML_BUILD=1 -DNDEBUG -DLOG_DISABLE_LOGS -DGGML_USE_LLAMAFILE #cgo amd64,avx CFLAGS: -mavx #cgo amd64,avx CXXFLAGS: -mavx #cgo amd64,avx2 CFLAGS: -mavx2 -mfma #cgo amd64,avx2 CXXFLAGS: -mavx2 -mfma #cgo amd64,f16c CFLAGS: -mf16c #cgo amd64,f16c CXXFLAGS: -mf16c #cgo amd64,fma CFLAGS: -mfma #cgo amd64,fma CXXFLAGS: -mfma #cgo avx CFLAGS: -mavx #cgo avx CXXFLAGS: -mavx #cgo avx2 CFLAGS: -mavx2 -mfma -mf16c #cgo avx2 CXXFLAGS: -mavx2 -mfma -mf16c #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo cuda CFLAGS: -fPIE -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo cuda CXXFLAGS: -DGGML_USE_CUDA -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo cuda_v11 LDFLAGS: -lggml_cuda_v11 -L/usr/local/cuda-11/lib64 #cgo cuda_v12 LDFLAGS: -lggml_cuda_v12 -L/usr/local/cuda-12/lib64 #cgo darwin,amd64 CFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers #cgo darwin,amd64 CXXFLAGS: -Wno-incompatible-pointer-types-discards-qualifiers #cgo darwin,amd64 LDFLAGS: -framework Foundation #cgo darwin,amd64,avx2 CFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 #cgo darwin,amd64,avx2 CXXFLAGS: -DGGML_USE_ACCELERATE -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 #cgo darwin,amd64,avx2 LDFLAGS: -framework Accelerate #cgo darwin,arm64 CFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS #cgo darwin,arm64 CXXFLAGS: -DGGML_USE_METAL -DGGML_USE_ACCELERATE -DGGML_METAL_EMBED_LIBRARY -DACCELERATE_NEW_LAPACK -DACCELERATE_LAPACK_ILP64 -DGGML_USE_BLAS #cgo darwin,arm64 LDFLAGS: -framework Foundation -framework Metal -framework MetalKit -framework Accelerate #cgo linux CFLAGS: -D_GNU_SOURCE #cgo linux CXXFLAGS: -D_GNU_SOURCE #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64 #cgo linux,amd64 LDFLAGS: -L${SRCDIR}/build/Linux/amd64 #cgo linux,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8 #cgo linux,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA -D__ARM_FEATURE_MATMUL_INT8 #cgo linux,arm64 LDFLAGS: -L${SRCDIR}/build/Linux/arm64 #cgo linux,arm64,sve CFLAGS: -march=armv8.6-a+sve #cgo linux,arm64,sve CXXFLAGS: -march=armv8.6-a+sve #cgo linux,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt -lpthread -ldl -lrt -lresolv #cgo linux,rocm LDFLAGS: -L/opt/rocm/lib -lpthread -ldl -lrt -lresolv #cgo rocm CFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo rocm CXXFLAGS: -DGGML_USE_CUDA -DGGML_USE_HIPBLAS -DGGML_CUDA_DMMV_X=32 -DGGML_CUDA_PEER_MAX_BATCH_SIZE=128 -DGGML_CUDA_MMV_Y=1 -DGGML_BUILD=1 #cgo rocm LDFLAGS: -L${SRCDIR} -lggml_rocm -lhipblas -lamdhip64 -lrocblas #cgo windows CFLAGS: -Wno-discarded-qualifiers -D_WIN32_WINNT=0x602 #cgo windows CXXFLAGS: -D_WIN32_WINNT=0x602 #cgo windows LDFLAGS: -lmsvcrt #cgo windows LDFLAGS: -lmsvcrt -static-libstdc++ -static-libgcc -static #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64 #cgo windows,amd64 LDFLAGS: -L${SRCDIR}/build/Windows/amd64 #cgo windows,arm64 CFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA #cgo windows,arm64 CXXFLAGS: -D__aarch64__ -D__ARM_NEON -D__ARM_FEATURE_FMA #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64 #cgo windows,arm64 LDFLAGS: -L${SRCDIR}/build/Windows/arm64 #cgo windows,cuda LDFLAGS: -lcuda -lcudart -lcublas -lcublasLt #cgo windows,rocm LDFLAGS: -lggml_rocm -lhipblas -lamdhip64 -lrocblas #include #include "llama.h" #include "clip.h" #include "ggml.h" #include "llava.h" #include "mllama.h" #include "sampling_ext.h" bool llamaProgressCallback(float progress, void *user_data); typedef enum {COMP_UNKNOWN,COMP_GCC,COMP_CLANG} COMPILER; COMPILER inline get_compiler() { #if defined(__clang__) return COMP_CLANG; #elif defined(__GNUC__) return COMP_GCC; #else return UNKNOWN_COMPILER; #endif } */ import "C" import ( _ "embed" "errors" "fmt" "runtime" "runtime/cgo" "strings" "unsafe" ) var CpuFeatures = "" func BackendInit() { C.llama_backend_init() } func PrintSystemInfo() string { var compiler string switch C.get_compiler() { case C.COMP_UNKNOWN: compiler = "cgo(unknown_compiler)" case C.COMP_GCC: compiler = "cgo(gcc)" case C.COMP_CLANG: compiler = "cgo(clang)" } return C.GoString(C.llama_print_system_info()) + compiler } func GetModelArch(modelPath string) (string, error) { mp := C.CString(modelPath) defer C.free(unsafe.Pointer(mp)) gguf_ctx := C.gguf_init_from_file(mp, C.struct_gguf_init_params{no_alloc: true, ctx: (**C.struct_ggml_context)(C.NULL)}) if gguf_ctx == nil { return "", errors.New("unable to load model file") } defer C.gguf_free(gguf_ctx) key := C.CString("general.architecture") defer C.free(unsafe.Pointer(key)) arch_index := C.gguf_find_key(gguf_ctx, key) if int(arch_index) < 0 { return "", errors.New("unknown model architecture") } arch := C.gguf_get_val_str(gguf_ctx, arch_index) return C.GoString(arch), nil } type ContextParams struct { c C.struct_llama_context_params } func NewContextParams(numCtx int, batchSize int, numSeqMax int, threads int, flashAttention bool) ContextParams { params := C.llama_context_default_params() params.n_ctx = C.uint(numCtx) params.n_batch = C.uint(batchSize) params.n_seq_max = C.uint(numSeqMax) params.n_threads = C.int(threads) params.n_threads_batch = params.n_threads params.embeddings = C.bool(true) params.flash_attn = C.bool(flashAttention) return ContextParams{c: params} } type Context struct { c *C.struct_llama_context numThreads int } func (c *Context) KvCacheClear() { C.llama_kv_cache_clear(c.c) } func (c *Context) Decode(batch *Batch) error { // Positive return values does not mean a fatal error, but rather a warning. // 0 - success // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context) // < 0 - error code := int(C.llama_decode(c.c, batch.c)) if code < 0 { return fmt.Errorf("llama_decode failed with code %d", code) } if code > 0 { return fmt.Errorf("could not find a KV slot for the batch - try reducing the size of the batch or increase the context. code: %d", code) } return nil } func (c *Context) Model() *Model { return &Model{c: C.llama_get_model(c.c)} } func (c *Context) KvCacheSeqAdd(seqId int, p0 int, p1 int, delta int) { C.llama_kv_cache_seq_add(c.c, C.int(seqId), C.int(p0), C.int(p1), C.int(delta)) } func (c *Context) KvCacheSeqRm(seqId int, p0 int, p1 int) bool { return bool(C.llama_kv_cache_seq_rm(c.c, C.int(seqId), C.int(p0), C.int(p1))) } func (c *Context) KvCacheSeqCp(srcSeqId int, dstSeqId int, p0 int, p1 int) { C.llama_kv_cache_seq_cp(c.c, C.int(srcSeqId), C.int(dstSeqId), C.int(p0), C.int(p1)) } // Get the embeddings for a sequence id func (c *Context) GetEmbeddingsSeq(seqId int) []float32 { embeddings := unsafe.Pointer(C.llama_get_embeddings_seq(c.c, C.int(seqId))) if embeddings == nil { return nil } return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd()) } func (c *Context) GetEmbeddingsIth(i int) []float32 { embeddings := unsafe.Pointer(C.llama_get_embeddings_ith(c.c, C.int32_t(i))) if embeddings == nil { return nil } return unsafe.Slice((*float32)(embeddings), c.Model().NEmbd()) } type ModelParams struct { NumGpuLayers int MainGpu int UseMmap bool UseMlock bool TensorSplit []float32 Progress func(float32) VocabOnly bool } //export llamaProgressCallback func llamaProgressCallback(progress C.float, userData unsafe.Pointer) C.bool { handle := *(*cgo.Handle)(userData) callback := handle.Value().(func(float32)) callback(float32(progress)) return true } func LoadModelFromFile(modelPath string, params ModelParams) (*Model, error) { cparams := C.llama_model_default_params() cparams.n_gpu_layers = C.int(params.NumGpuLayers) cparams.main_gpu = C.int32_t(params.MainGpu) cparams.use_mmap = C.bool(params.UseMmap) cparams.use_mlock = C.bool(params.UseMlock) cparams.vocab_only = C.bool(params.VocabOnly) if len(params.TensorSplit) > 0 { tensorSplitData := ¶ms.TensorSplit[0] var tensorSplitPin runtime.Pinner tensorSplitPin.Pin(tensorSplitData) defer tensorSplitPin.Unpin() cparams.tensor_split = (*C.float)(unsafe.Pointer(tensorSplitData)) } if params.Progress != nil { handle := cgo.NewHandle(params.Progress) defer handle.Delete() var handlePin runtime.Pinner handlePin.Pin(&handle) defer handlePin.Unpin() cparams.progress_callback = C.llama_progress_callback(C.llamaProgressCallback) cparams.progress_callback_user_data = unsafe.Pointer(&handle) } m := Model{c: C.llama_load_model_from_file(C.CString(modelPath), cparams)} if m.c == (*C.struct_llama_model)(C.NULL) { return nil, fmt.Errorf("unable to load model: %s", modelPath) } return &m, nil } func FreeModel(model *Model) { C.llama_free_model(model.c) } func NewContextWithModel(model *Model, params ContextParams) (*Context, error) { c := Context{ c: C.llama_new_context_with_model(model.c, params.c), numThreads: int(params.c.n_threads), } if c.c == (*C.struct_llama_context)(C.NULL) { return nil, errors.New("unable to create llama context") } return &c, nil } func (m *Model) NumVocab() int { return int(C.llama_n_vocab(m.c)) } func (m *Model) TokenIsEog(token int) bool { return bool(C.llama_token_is_eog(m.c, C.llama_token(token))) } func (m *Model) AddBOSToken() bool { return bool(C.llama_add_bos_token(m.c)) } func (m *Model) ApplyLoraFromFile(context *Context, loraPath string, scale float32, threads int) error { cLoraPath := C.CString(loraPath) defer C.free(unsafe.Pointer(cLoraPath)) loraAdapter := C.llama_lora_adapter_init(m.c, cLoraPath) err := -1 if loraAdapter != nil { err = int(C.llama_lora_adapter_set(context.c, loraAdapter, C.float(scale))) } if err != 0 { return errors.New("error applying lora from file") } return nil } type Batch struct { c C.struct_llama_batch batchSize int embedSize int } // Creates a new batch for either word tokens if embed is 0 or // image embeddings if embed is specified. Batches cannot contain // both types at the same time func NewBatch(nTokens int, embed int, maxSeq int) *Batch { return &Batch{ c: C.llama_batch_init(C.int(nTokens), C.int(embed), C.int(maxSeq)), batchSize: nTokens, embedSize: embed, } } func (b *Batch) NumTokens() int { return int(b.c.n_tokens) } func (b *Batch) IsEmbedding() bool { return b.embedSize != 0 } // Add adds either a token or an image embedding to the batch depending on the type // when the batch was initialized. The other argument will be ignored. Adds to the // batch with the given position for the given sequence ids, and optionally instructs // to include logits. func (b *Batch) Add(token int, embed []float32, pos int, seqIds []int, logits bool) { if !b.IsEmbedding() { unsafe.Slice(b.c.token, b.batchSize)[b.c.n_tokens] = C.llama_token(token) } else { copy(unsafe.Slice((*float32)(b.c.embd), b.batchSize*b.embedSize)[int(b.c.n_tokens)*b.embedSize:], embed) } unsafe.Slice(b.c.pos, b.batchSize)[b.c.n_tokens] = C.llama_pos(pos) unsafe.Slice(b.c.n_seq_id, b.batchSize)[b.c.n_tokens] = C.int(len(seqIds)) for i, s := range seqIds { unsafe.Slice((unsafe.Slice(b.c.seq_id, b.batchSize)[b.c.n_tokens]), C.int(len(seqIds)))[i] = C.int32_t(s) } if logits { unsafe.Slice(b.c.logits, b.batchSize)[b.c.n_tokens] = 1 } b.c.n_tokens += 1 } func (b *Batch) Clear() { b.c.n_tokens = 0 } func (b *Batch) Free() { b.batchSize = 0 C.llama_batch_free(b.c) } type Model struct { c *C.struct_llama_model } func (m *Model) TokenToPiece(token int) string { tokenLen := 12 buf := make([]byte, tokenLen) tokenLen = int(C.llama_token_to_piece( m.c, C.int32_t(token), (*C.char)(unsafe.Pointer(&buf[0])), C.int32_t(tokenLen), C.int32_t(0), C.bool(true), )) if tokenLen < 0 { tokenLen = -tokenLen buf = make([]byte, tokenLen) C.llama_token_to_piece( m.c, C.int32_t(token), (*C.char)(unsafe.Pointer(&buf[0])), C.int32_t(tokenLen), C.int32_t(0), C.bool(true), ) } return strings.TrimRight(string(buf), "\x00") } func (m *Model) Tokenize(text string, addSpecial bool, parseSpecial bool) ([]int, error) { maxTokens := len(text) + 2 cTokens := make([]C.llama_token, maxTokens) cText := C.CString(text) defer C.free(unsafe.Pointer(cText)) result := C.llama_tokenize( m.c, cText, C.int32_t(len(text)), &cTokens[0], C.int32_t(maxTokens), C.bool(addSpecial), C.bool(parseSpecial), ) // if the result is negative, reallocate and retry with the correct buffer size if result < 0 { maxTokens = int(-result) cTokens = make([]C.llama_token, maxTokens) result = C.llama_tokenize( m.c, cText, C.int32_t(len(text)), &cTokens[0], C.int32_t(maxTokens), C.bool(addSpecial), C.bool(parseSpecial), ) if result < 0 { return nil, fmt.Errorf("tokenization failed, required %d tokens", -result) } } tokens := make([]int, result) for i := range result { tokens[i] = int(cTokens[i]) } return tokens, nil } func (m *Model) NEmbd() int { return int(C.llama_n_embd(m.c)) } func Quantize(infile, outfile string, ftype uint32) error { cinfile := C.CString(infile) defer C.free(unsafe.Pointer(cinfile)) coutfile := C.CString(outfile) defer C.free(unsafe.Pointer(coutfile)) params := C.llama_model_quantize_default_params() params.nthread = -1 params.ftype = ftype if rc := C.llama_model_quantize(cinfile, coutfile, ¶ms); rc != 0 { return fmt.Errorf("llama_model_quantize: %d", rc) } return nil } // vision processing type ClipContext struct { c *C.struct_clip_ctx } func NewClipContext(llamaContext *Context, modelPath string) (*ClipContext, error) { mp := C.CString(modelPath) defer C.free(unsafe.Pointer(mp)) c := C.clip_model_load(mp, 1) projEmbedSize := int(C.clip_n_mmproj_embd(c)) modelEmbedSize := llamaContext.Model().NEmbd() if projEmbedSize != modelEmbedSize { return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize) } return &ClipContext{c: c}, nil } func (c *ClipContext) Free() { C.clip_free(c.c) } func (c *ClipContext) NewEmbed(llamaContext *Context, data []byte) [][]float32 { l := C.llava_image_embed_make_with_bytes(c.c, C.int(llamaContext.numThreads), (*C.uchar)(unsafe.Pointer(&data[0])), C.int(len(data))) numTokens := int(l.n_image_pos) numEmbed := llamaContext.Model().NEmbd() s := unsafe.Slice((*float32)(l.embed), numEmbed*numTokens) embed := make([][]float32, numTokens) rows := make([]float32, len(s)) copy(rows, s) for i := range embed { embed[i] = rows[i*numEmbed : (i+1)*numEmbed] } C.llava_image_embed_free(l) return embed } type MllamaContext struct { c *C.struct_mllama_ctx } func NewMllamaContext(llamaContext *Context, modelPath string) (*MllamaContext, error) { mp := C.CString(modelPath) defer C.free(unsafe.Pointer(mp)) c := C.mllama_model_load(mp, 1) projEmbedSize := int(C.mllama_n_embd(c)) modelEmbedSize := llamaContext.Model().NEmbd() if projEmbedSize != modelEmbedSize { return nil, fmt.Errorf("projector embedding size (%d) does not match model (%d)", projEmbedSize, modelEmbedSize) } return &MllamaContext{c: c}, nil } func (m *MllamaContext) Free() { C.mllama_free(m.c) } func (m *MllamaContext) NewEmbed(llamaContext *Context, data []byte, aspectRatioId int) [][]float32 { img := C.mllama_image_init() defer C.mllama_image_free(img) C.mllama_image_load_from_data(unsafe.Pointer(&data[0]), C.int(len(data)), 560, 560, 3, 4, C.int(aspectRatioId), img) rows := make([]float32, m.EmbedSize(llamaContext)) C.mllama_image_encode(m.c, C.int(llamaContext.numThreads), img, (*C.float)(unsafe.Pointer(&rows[0]))) embed := make([][]float32, 1) embed[0] = rows return embed } func (m *MllamaContext) EmbedSize(llamaContext *Context) int { numTokens := int(C.mllama_n_positions(m.c) * C.mllama_n_tiles(m.c)) numEmbed := llamaContext.Model().NEmbd() return numTokens * numEmbed } func (c *Context) SetCrossAttention(state bool) { C.llama_set_cross_attention(c.c, C.bool(state)) } // sampling // TODO: this is a temporary wrapper to allow calling C++ code from CGo type SamplingContext struct { c *C.struct_gpt_sampler } type SamplingParams struct { TopK int TopP float32 MinP float32 TfsZ float32 TypicalP float32 Temp float32 RepeatLastN int PenaltyRepeat float32 PenaltyFreq float32 PenaltyPresent float32 Mirostat int MirostatTau float32 MirostatEta float32 PenalizeNl bool Seed uint32 Grammar string } func NewSamplingContext(model *Model, params SamplingParams) *SamplingContext { var cparams C.struct_gpt_sampler_cparams cparams.top_k = C.int32_t(params.TopK) cparams.top_p = C.float(params.TopP) cparams.min_p = C.float(params.MinP) cparams.tfs_z = C.float(params.TfsZ) cparams.typical_p = C.float(params.TypicalP) cparams.temp = C.float(params.Temp) cparams.penalty_last_n = C.int32_t(params.RepeatLastN) cparams.penalty_repeat = C.float(params.PenaltyRepeat) cparams.penalty_freq = C.float(params.PenaltyFreq) cparams.penalty_present = C.float(params.PenaltyFreq) cparams.mirostat = C.int32_t(params.Mirostat) cparams.mirostat_tau = C.float(params.MirostatTau) cparams.mirostat_eta = C.float(params.MirostatEta) cparams.penalize_nl = C.bool(params.PenalizeNl) cparams.seed = C.uint32_t(params.Seed) grammar := C.CString(params.Grammar) defer C.free(unsafe.Pointer(grammar)) cparams.grammar = grammar context := &SamplingContext{c: C.gpt_sampler_cinit(model.c, &cparams)} runtime.SetFinalizer(context, func(s *SamplingContext) { C.gpt_sampler_cfree(s.c) }) return context } func (s *SamplingContext) Reset() { C.gpt_sampler_creset(s.c) } func (s *SamplingContext) Sample(llamaContext *Context, idx int) int { return int(C.gpt_sampler_csample(s.c, llamaContext.c, C.int(idx))) } func (s *SamplingContext) Accept(id int, applyGrammar bool) { C.gpt_sampler_caccept(s.c, C.llama_token(id), C.bool(applyGrammar)) }