package convert import ( "fmt" "io" "log/slog" "strings" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/ollama/ollama/llm" ) type GemmaModel struct { ModelData } func addOnes(data []float32, vectorSize int) ([]float32, error) { n := tensor.New(tensor.WithShape(vectorSize), tensor.WithBacking(data)) ones := tensor.Ones(tensor.Float32, vectorSize) n, err := n.Add(ones) if err != nil { return nil, err } ts, err := native.SelectF32(n, 0) if err != nil { return nil, err } var f32s []float32 for _, t := range ts { f32s = append(f32s, t...) } return f32s, nil } func (m *GemmaModel) GetTensors() error { t, err := m.Format.GetTensors(m.Path, m.Params) if err != nil { return err } slog.Debug(fmt.Sprintf("Total tensors: %d", len(t))) for _, l := range t { if strings.HasSuffix(l.Name, "norm.weight") { wt := l.WriterTo.(safetensorWriterTo) wt.repacker = m.Repack l.WriterTo = wt } m.Tensors = append(m.Tensors, l) } return nil } func (m *GemmaModel) LoadVocab() error { v, err := LoadSentencePieceTokens(m.Path, m.Params) if err != nil { return err } m.Vocab = v return nil } func (m *GemmaModel) Repack(_ string, data []float32, shape []uint64) ([]float32, error) { return addOnes(data, int(shape[0])) } func (m *GemmaModel) WriteGGUF(ws io.WriteSeeker) error { kv := llm.KV{ "general.architecture": "gemma", "general.name": m.Name, "gemma.context_length": uint32(m.Params.ContextSize), "gemma.embedding_length": uint32(m.Params.HiddenSize), "gemma.block_count": uint32(m.Params.HiddenLayers), "gemma.feed_forward_length": uint32(m.Params.IntermediateSize), "gemma.attention.head_count": uint32(m.Params.AttentionHeads), "gemma.attention.head_count_kv": uint32(m.Params.KeyValHeads), "gemma.attention.layer_norm_rms_epsilon": float32(m.Params.NormEPS), "gemma.attention.key_length": uint32(m.Params.HeadDimension), "gemma.attention.value_length": uint32(m.Params.HeadDimension), "general.file_type": uint32(1), "tokenizer.ggml.model": "llama", "tokenizer.ggml.tokens": m.Vocab.Tokens, "tokenizer.ggml.scores": m.Vocab.Scores, "tokenizer.ggml.token_type": m.Vocab.Types, "tokenizer.ggml.bos_token_id": uint32(m.Params.BoSTokenID), "tokenizer.ggml.eos_token_id": uint32(m.Params.EoSTokenID), "tokenizer.ggml.padding_token_id": uint32(m.Params.PaddingTokenID), "tokenizer.ggml.unknown_token_id": uint32(3), "tokenizer.ggml.add_bos_token": true, "tokenizer.ggml.add_eos_token": false, } return llm.NewGGUFV3(m.Params.ByteOrder).Encode(ws, kv, m.Tensors) }