/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #if defined(_MSC_VER) #define _SILENCE_CXX17_CODECVT_HEADER_DEPRECATION_WARNING #endif #if defined(_WIN32) #define WIN32_LEAN_AND_MEAN #include <windows.h> #endif #include "unicode.h" #include "unicode-data.h" #include <algorithm> #include <cassert> #include <cstddef> #include <cstdint> #include <map> #include <regex> #include <stdexcept> #include <string> #include <unordered_map> #include <unordered_set> #include <utility> #include <vector> #include <locale> #include <codecvt> size_t unicode_len_utf8(char src) { const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 }; uint8_t highbits = static_cast<uint8_t>(src) >> 4; return lookup[highbits]; } static std::string unicode_cpts_to_utf8(const std::vector<uint32_t> & cps) { std::string result; for (size_t i = 0; i < cps.size(); ++i) { result.append(unicode_cpt_to_utf8(cps[i])); } return result; } uint32_t unicode_cpt_from_utf8(const std::string & utf8, size_t & offset) { assert(offset < utf8.size()); if (!(utf8[offset + 0] & 0x80)) { auto result = utf8[offset + 0]; offset += 1; return result; } if (!(utf8[offset + 0] & 0x40)) { throw std::invalid_argument("invalid character"); } if (!(utf8[offset + 0] & 0x20)) { if (offset + 1 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x1f) << 6) | (utf8[offset + 1] & 0x3f); offset += 2; return result; } if (!(utf8[offset + 0] & 0x10)) { if (offset + 2 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x0f) << 12) | ((utf8[offset + 1] & 0x3f) << 6) | (utf8[offset + 2] & 0x3f); offset += 3; return result; } if (!(utf8[offset + 0] & 0x08)) { if (offset + 3 >= utf8.size() || ! ((utf8[offset + 1] & 0xc0) == 0x80) || ! ((utf8[offset + 2] & 0xc0) == 0x80) || !((utf8[offset + 3] & 0xc0) == 0x80)) { throw std::invalid_argument("invalid character"); } auto result = ((utf8[offset + 0] & 0x07) << 18) | ((utf8[offset + 1] & 0x3f) << 12) | ((utf8[offset + 2] & 0x3f) << 6) | (utf8[offset + 3] & 0x3f); offset += 4; return result; } throw std::invalid_argument("failed to convert utf8 to codepoint"); } //static std::vector<uint16_t> unicode_cpt_to_utf16(uint32_t cp) { // std::vector<uint16_t> result; // if (/* 0x0000 <= cp && */ cp <= 0xffff) { // result.emplace_back(cp); // return result; // } // if (0x10000 <= cp && cp <= 0x10ffff) { // result.emplace_back(0xd800 | ((cp - 0x10000) >> 10)); // result.emplace_back(0xdc00 | ((cp - 0x10000) & 0x03ff)); // return result; // } // throw std::invalid_argument("failed to convert codepoint to utf16"); //} //static std::vector<uint16_t> unicode_cpts_to_utf16(const std::vector<uint32_t> & cps) { // std::vector<uint16_t> result; // for (size_t i = 0; i < cps.size(); ++i) { // auto temp = unicode_cpt_to_utf16(cps[i]); // result.insert(result.end(), temp.begin(), temp.end()); // } // return result; //} //static uint32_t unicode_cpt_from_utf16(const std::vector<uint16_t> & utf16, size_t & offset) { // assert(offset < utf16.size()); // if (((utf16[0] >> 10) << 10) != 0xd800) { // auto result = utf16[offset + 0]; // offset += 1; // return result; // } // // if (offset + 1 >= utf16.size() || !((utf16[1] & 0xdc00) == 0xdc00)) { // throw std::invalid_argument("invalid character"); // } // // auto result = 0x10000 + (((utf16[0] & 0x03ff) << 10) | (utf16[1] & 0x03ff)); // offset += 2; // return result; //} //static std::vector<uint32_t> unicode_cpts_from_utf16(const std::vector<uint16_t> & utf16) { // std::vector<uint32_t> result; // size_t offset = 0; // while (offset < utf16.size()) { // result.push_back(unicode_cpt_from_utf16(utf16, offset)); // } // return result; //} static std::vector<codepoint_flags> unicode_cpt_flags_array() { std::vector<codepoint_flags> cpt_flags(MAX_CODEPOINTS, codepoint_flags::UNDEFINED); assert (unicode_ranges_flags.front().first == 0); assert (unicode_ranges_flags.back().first == MAX_CODEPOINTS); for (size_t i = 1; i < unicode_ranges_flags.size(); ++i) { const auto range_ini = unicode_ranges_flags[i-1]; // codepoint_ini, flags const auto range_end = unicode_ranges_flags[i]; // codepoint_end, flags for (uint32_t cpt = range_ini.first; cpt < range_end.first; ++cpt) { cpt_flags[cpt] = range_ini.second; } } for (auto cpt : unicode_set_whitespace) { cpt_flags[cpt].is_whitespace = true; } for (auto p : unicode_map_lowercase) { cpt_flags[p.second].is_lowercase = true; } for (auto p : unicode_map_uppercase) { cpt_flags[p.second].is_uppercase = true; } for (auto &range : unicode_ranges_nfd) { // start, last, nfd cpt_flags[range.nfd].is_nfd = true; } return cpt_flags; } static std::unordered_map<uint8_t, std::string> unicode_byte_to_utf8_map() { std::unordered_map<uint8_t, std::string> map; for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~' assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬' assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ' assert(0 <= ch && ch < 256); map[ch] = unicode_cpt_to_utf8(ch); } auto n = 0; for (int ch = 0; ch < 256; ++ch) { if (map.find(ch) == map.end()) { map[ch] = unicode_cpt_to_utf8(256 + n); ++n; } } return map; } static std::unordered_map<std::string, uint8_t> unicode_utf8_to_byte_map() { std::unordered_map<std::string, uint8_t> map; for (int ch = 0x21; ch <= 0x7E; ++ch) { // u'!' to u'~' assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } for (int ch = 0xA1; ch <= 0xAC; ++ch) { // u'¡' to u'¬' assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } for (int ch = 0xAE; ch <= 0xFF; ++ch) { // u'®' to u'ÿ' assert(0 <= ch && ch < 256); map[unicode_cpt_to_utf8(ch)] = ch; } auto n = 0; for (int ch = 0; ch < 256; ++ch) { if (map.find(unicode_cpt_to_utf8(ch)) == map.end()) { map[unicode_cpt_to_utf8(256 + n)] = ch; ++n; } } return map; } static inline std::wstring unicode_wstring_from_utf8(const std::string & s) { #ifdef _WIN32 int wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, NULL, 0); if (!wlen) { throw std::invalid_argument("failed to convert regex"); } wchar_t * wbuf = (wchar_t *) malloc(wlen * sizeof(wchar_t)); wlen = MultiByteToWideChar(CP_UTF8, 0, s.c_str(), -1, wbuf, wlen); if (!wlen) { free(wbuf); throw std::invalid_argument("failed to convert regex"); } std::wstring ret = std::wstring(wbuf); free(wbuf); return ret; #else std::wstring_convert<std::codecvt_utf8<wchar_t>> conv; return conv.from_bytes(s); #endif } static std::vector<std::string> unicode_byte_encoding_process(const std::vector<std::string> & bpe_words) { std::vector<std::string> bpe_encoded_words; for (const auto & word : bpe_words) { std::string text_utf; auto utf_word = unicode_cpts_from_utf8(word); for (size_t i = 0; i < utf_word.size(); ++i) { text_utf += unicode_cpt_to_utf8(utf_word[i]); } std::string encoded_token; for (char & c : text_utf) { encoded_token += unicode_byte_to_utf8(c); } bpe_encoded_words.emplace_back(encoded_token); } return bpe_encoded_words; } // GPT2 system regex: 's|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+ static std::vector<size_t> unicode_regex_split_custom_gpt2(const std::string & text, const std::vector<size_t> & offsets) { std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size const auto cpts = unicode_cpts_from_utf8(text); size_t start = 0; for (auto offset : offsets) { const size_t offset_ini = start; const size_t offset_end = start + offset; assert(offset_end <= cpts.size()); start = offset_end; static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF; auto _get_cpt = [&] (const size_t pos) -> uint32_t { return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; auto _get_flags = [&] (const size_t pos) -> codepoint_flags { return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; }; size_t _prev_end = offset_ini; auto _add_token = [&] (const size_t end) -> size_t { assert(_prev_end <= end && end <= offset_end); size_t len = end - _prev_end; if (len > 0) { bpe_offsets.push_back(len); } _prev_end = end; //if (len > 0) { // std::string s = ""; // for(size_t p = end-len; p < end; p++) // s += unicode_cpt_to_utf8(cpts[p]); // printf(">>> '%s'\n", s.c_str()); //} return len; }; for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { const uint32_t cpt = _get_cpt(pos); const auto flags = _get_flags(pos); // regex: 's|'t|'re|'ve|'m|'ll|'d if (cpt == '\'' && pos+1 < offset_end) { uint32_t cpt_next = _get_cpt(pos+1); if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { pos += _add_token(pos+2); continue; } if (pos+2 < offset_end) { uint32_t cpt_next_next = _get_cpt(pos+2); if ((cpt_next == 'r' && cpt_next_next == 'e') || (cpt_next == 'v' && cpt_next_next == 'e') || (cpt_next == 'l' && cpt_next_next == 'l')) { pos += _add_token(pos+3); continue; } } } auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags); // regex: <space>?\p{L}+ if (flags2.is_letter) { pos += (cpt == ' '); while (flags2.is_letter) { flags2 = _get_flags(++pos); } _add_token(pos); continue; } // regex: <space>?\p{N}+ if (flags2.is_number) { pos += (cpt == ' '); while (flags2.is_number) { flags2 = _get_flags(++pos); } _add_token(pos); continue; } // regex: <space>?[^\s\p{L}\p{N}]+ if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) { pos += (cpt == ' '); while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) { flags2 = _get_flags(++pos); } _add_token(pos); continue; } size_t num_whitespaces = 0; while (_get_flags(pos+num_whitespaces).is_whitespace) { num_whitespaces++; } // regex: \s+(?!\S) if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) { pos += num_whitespaces - 1; _add_token(pos); continue; } // regex: \s+ if (num_whitespaces > 0) { pos += num_whitespaces; _add_token(pos); continue; } // no matches _add_token(++pos); } } return bpe_offsets; } // LLAMA3 system regex: "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\r\n\p{L}\p{N}]?\p{L}+|\p{N}{1,3}| ?[^\s\p{L}\p{N}]+[\r\n]*|\s*[\r\n]+|\s+(?!\S)|\s+" static std::vector<size_t> unicode_regex_split_custom_llama3(const std::string & text, const std::vector<size_t> & offsets) { std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size const auto cpts = unicode_cpts_from_utf8(text); size_t start = 0; for (auto offset : offsets) { const size_t offset_ini = start; const size_t offset_end = start + offset; assert(offset_end <= cpts.size()); start = offset_end; static const uint32_t OUT_OF_RANGE = 0xFFFFFFFF; auto _get_cpt = [&] (const size_t pos) -> uint32_t { return (offset_ini <= pos && pos < offset_end) ? cpts[pos] : OUT_OF_RANGE; }; auto _get_flags = [&] (const size_t pos) -> codepoint_flags { return (offset_ini <= pos && pos < offset_end) ? unicode_cpt_flags(cpts[pos]) : codepoint_flags{}; }; size_t _prev_end = offset_ini; auto _add_token = [&] (const size_t end) -> size_t { assert(_prev_end <= end && end <= offset_end); size_t len = end - _prev_end; if (len > 0) { bpe_offsets.push_back(len); } _prev_end = end; //if (len > 0) { // std::string s = ""; // for(size_t p = end-len; p < end; p++) // s += unicode_cpt_to_utf8(cpts[p]); // printf(">>> '%s'\n", s.c_str()); //} return len; }; for (size_t pos = offset_ini; pos < offset_end; /*pos++*/ ) { const uint32_t cpt = _get_cpt(pos); const auto flags = _get_flags(pos); // regex: (?i:'s|'t|'re|'ve|'m|'ll|'d) // case insensitive if (cpt == '\'' && pos+1 < offset_end) { uint32_t cpt_next = unicode_tolower(_get_cpt(pos+1)); if (cpt_next == 's' || cpt_next == 't' || cpt_next == 'm' || cpt_next == 'd') { pos += _add_token(pos+2); continue; } if (pos+2 < offset_end) { uint32_t cpt_next_next = unicode_tolower(_get_cpt(pos+2)); if ((cpt_next == 'r' && cpt_next_next == 'e') || (cpt_next == 'v' && cpt_next_next == 'e') || (cpt_next == 'l' && cpt_next_next == 'l')) { pos += _add_token(pos+3); continue; } } } // regex: [^\r\n\p{L}\p{N}]?\p{L}+ if (!(cpt == '\r' || cpt == '\n' || flags.is_number)) { if (flags.is_letter || _get_flags(pos+1).is_letter) { // one or more letters pos++; while (_get_flags(pos).is_letter) { pos++; } _add_token(pos); continue; } } // regex: \p{N}{1,3} if (flags.is_number) { size_t ini = pos; while (_get_flags(pos).is_number) { if (++pos - ini >= 3 ) { _add_token(pos); ini = pos; } } _add_token(pos); continue; } // regex: <space>?[^\s\p{L}\p{N}]+[\r\n]* auto flags2 = (cpt == ' ' ? _get_flags(pos+1) : flags); if (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags.as_uint()) { pos += (cpt == ' '); while (!(flags2.is_whitespace | flags2.is_letter | flags2.is_number) && flags2.as_uint()) { flags2 = _get_flags(++pos); } uint32_t cpt2 = _get_cpt(pos); while (cpt2 == '\r' || cpt2 == '\n') { cpt2 = _get_cpt(++pos); } _add_token(pos); continue; } size_t num_whitespaces = 0; size_t last_end_r_or_n = 0; while (_get_flags(pos+num_whitespaces).is_whitespace) { uint32_t cpt2 = _get_cpt(pos+num_whitespaces); if (cpt2 == '\r' || cpt2 == '\n') { last_end_r_or_n = pos + num_whitespaces + 1; } num_whitespaces++; } // regex: \s*[\r\n]+ if (last_end_r_or_n > 0) { pos = last_end_r_or_n; _add_token(pos); continue; } // regex: \s+(?!\S) if (num_whitespaces > 1 && _get_cpt(pos+num_whitespaces) != OUT_OF_RANGE) { pos += num_whitespaces - 1; _add_token(pos); continue; } // regex: \s+ if (num_whitespaces > 0) { pos += num_whitespaces; _add_token(pos); continue; } // no matches _add_token(++pos); } } return bpe_offsets; } // use std::wregex to split the text static std::vector<size_t> unicode_regex_split_stl(const std::wstring & wtext, const std::wstring & regex_expr, const std::vector<size_t> & offsets) { std::wregex expr(regex_expr); std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; for (auto offset : offsets) { std::wcregex_iterator it(wtext.data() + start, wtext.data() + start + offset, expr); std::wcregex_iterator end; int64_t start_idx = 0; while (it != end) { std::wcmatch match = *it; if (match.position() > start_idx) { bpe_offsets.emplace_back(match.position() - start_idx); } bpe_offsets.emplace_back(match.length()); start_idx = match.position() + match.length(); ++it; } if (start_idx < (int64_t) offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; } return bpe_offsets; } // use std::regex to split the text static std::vector<size_t> unicode_regex_split_stl(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { std::regex expr(regex_expr); std::vector<size_t> bpe_offsets; // store the offset of each word bpe_offsets.reserve(offsets.size()); // Reserve memory for the approximate size size_t start = 0; for (auto offset : offsets) { std::cregex_iterator it(text.data() + start, text.data() + start + offset, expr); std::cregex_iterator end; int64_t start_idx = 0; while (it != end) { std::cmatch match = *it; if (match.position() > start_idx) { bpe_offsets.emplace_back(match.position() - start_idx); } bpe_offsets.emplace_back(match.length()); start_idx = match.position() + match.length(); ++it; } if (start_idx < (int64_t) offset) { bpe_offsets.emplace_back(offset - start_idx); } start += offset; } return bpe_offsets; } static std::vector<size_t> unicode_regex_split_custom(const std::string & text, const std::string & regex_expr, const std::vector<size_t> & offsets) { std::vector<size_t> bpe_offsets; if (regex_expr == "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)") { bpe_offsets = unicode_regex_split_custom_gpt2(text, offsets); } else if ( regex_expr == "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" || regex_expr == "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+") { bpe_offsets = unicode_regex_split_custom_llama3(text, offsets); } return bpe_offsets; } // // interface // std::string unicode_cpt_to_utf8(uint32_t cp) { std::string result; if (/* 0x00 <= cp && */ cp <= 0x7f) { result.push_back(cp); return result; } if (0x80 <= cp && cp <= 0x7ff) { result.push_back(0xc0 | ((cp >> 6) & 0x1f)); result.push_back(0x80 | (cp & 0x3f)); return result; } if (0x800 <= cp && cp <= 0xffff) { result.push_back(0xe0 | ((cp >> 12) & 0x0f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); return result; } if (0x10000 <= cp && cp <= 0x10ffff) { result.push_back(0xf0 | ((cp >> 18) & 0x07)); result.push_back(0x80 | ((cp >> 12) & 0x3f)); result.push_back(0x80 | ((cp >> 6) & 0x3f)); result.push_back(0x80 | (cp & 0x3f)); return result; } throw std::invalid_argument("invalid codepoint"); } std::vector<uint32_t> unicode_cpts_normalize_nfd(const std::vector<uint32_t> & cpts) { auto comp = [] (const uint32_t cpt, const range_nfd & range) { return cpt < range.first; }; std::vector<uint32_t> result(cpts.size()); for (size_t i = 0; i < cpts.size(); ++i) { const uint32_t cpt = cpts[i]; auto it = std::upper_bound(unicode_ranges_nfd.cbegin(), unicode_ranges_nfd.cend(), cpt, comp) - 1; result[i] = (it->first <= cpt && cpt <= it->last) ? it->nfd : cpt; } return result; } std::vector<uint32_t> unicode_cpts_from_utf8(const std::string & utf8) { std::vector<uint32_t> result; result.reserve(utf8.size()); size_t offset = 0; while (offset < utf8.size()) { result.push_back(unicode_cpt_from_utf8(utf8, offset)); } return result; } codepoint_flags unicode_cpt_flags(const uint32_t cp) { static const codepoint_flags undef(codepoint_flags::UNDEFINED); static const auto cpt_flags = unicode_cpt_flags_array(); return cp < cpt_flags.size() ? cpt_flags[cp] : undef; } codepoint_flags unicode_cpt_flags(const std::string & utf8) { static const codepoint_flags undef(codepoint_flags::UNDEFINED); if (utf8.empty()) { return undef; // undefined } size_t offset = 0; return unicode_cpt_flags(unicode_cpt_from_utf8(utf8, offset)); } std::string unicode_byte_to_utf8(uint8_t byte) { static std::unordered_map<uint8_t, std::string> map = unicode_byte_to_utf8_map(); return map.at(byte); } uint8_t unicode_utf8_to_byte(const std::string & utf8) { static std::unordered_map<std::string, uint8_t> map = unicode_utf8_to_byte_map(); return map.at(utf8); } uint32_t unicode_tolower(uint32_t cp) { auto it = unicode_map_lowercase.find(cp); return it == unicode_map_lowercase.end() ? cp : it->second; } std::vector<std::string> unicode_regex_split(const std::string & text, const std::vector<std::string> & regex_exprs) { // unicode categories static const std::map<std::string, int> k_ucat_enum = { { "\\p{N}", codepoint_flags::NUMBER }, { "\\p{L}", codepoint_flags::LETTER }, { "\\p{P}", codepoint_flags::PUNCTUATION }, }; static const std::map<int, int> k_ucat_cpt = { { codepoint_flags::NUMBER, 0xD1 }, { codepoint_flags::LETTER, 0xD2 }, { codepoint_flags::PUNCTUATION, 0xD3 }, }; static const std::map<int, std::string> k_ucat_map = { { codepoint_flags::NUMBER, "\x30-\x39" }, // 0-9 { codepoint_flags::LETTER, "\x41-\x5A\x61-\x7A" }, // A-Za-z { codepoint_flags::PUNCTUATION, "\x21-\x23\x25-\x2A\x2C-\x2F\x3A-\x3B\x3F-\x40\\\x5B-\\\x5D\x5F\\\x7B\\\x7D" }, // !-#%-*,-/:-;?-@\[-\]_\{\} }; // compute collapsed codepoints only if needed by at least one regex bool need_collapse = false; for (auto & regex_expr : regex_exprs) { // search for unicode categories for (const auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { need_collapse = true; break; } } } const auto cpts = unicode_cpts_from_utf8(text); // generate a "collapsed" representation of the text, where all codepoints are replaced by a single byte // ref: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2081479935 std::string text_collapsed; if (need_collapse) { // collapse all unicode categories text_collapsed.resize(cpts.size()); for (size_t i = 0; i < cpts.size(); ++i) { // keep single-byte codepoints as is if (cpts[i] < 128) { text_collapsed[i] = cpts[i]; continue; } const auto flags = unicode_cpt_flags(cpts[i]); if (flags.is_whitespace) { //NOTE: C++ std::regex \s does not mach 0x85, Rust and Python regex does. //text_collapsed[i] = (char) 0x85; // <Next Line> as whitespace fallback text_collapsed[i] = (char) 0x0B; // <vertical tab> as whitespace fallback } else if (k_ucat_cpt.find(flags.category_flag()) != k_ucat_cpt.end()) { text_collapsed[i] = k_ucat_cpt.at(flags.category_flag()); } else { text_collapsed[i] = (char) 0xD0; // fallback } } } std::vector<size_t> bpe_offsets = { cpts.size() }; for (auto & regex_expr : regex_exprs) { // first, see if we have an efficient custom regex implementation auto tmp = unicode_regex_split_custom(text, regex_expr, bpe_offsets); if (!tmp.empty()) { bpe_offsets = std::move(tmp); continue; } // fallback to general-purpose std::regex / std::wregex try { // if a unicode category is used in the regex, we use the collapsed text and replace the unicode category // with the corresponding collapsed representation bool use_collapsed = false; for (auto & ucat : k_ucat_enum) { if (std::string::npos != regex_expr.find(ucat.first)) { use_collapsed = true; break; } } if (use_collapsed) { // sanity-check that the original regex does not contain any non-ASCII characters const auto cpts_regex = unicode_cpts_from_utf8(regex_expr); for (size_t i = 0; i < cpts_regex.size(); ++i) { if (cpts_regex[i] >= 128) { throw std::runtime_error("Regex includes both unicode categories and non-ASCII characters - not supported"); } } // generate a collapsed representation of the regex std::string regex_expr_collapsed; // track if we are inside [], because nested [] are not allowed bool inside = false; for (size_t i = 0; i < regex_expr.size(); ++i) { if (regex_expr[i] == '[' && (i == 0 || regex_expr[i - 1] != '\\')) { regex_expr_collapsed += '['; inside = true; continue; } if (inside && regex_expr[i] == ']' && regex_expr[i - 1] != '\\') { regex_expr_collapsed += ']'; inside = false; continue; } if (regex_expr[i + 0] == '\\' && i + 4 < regex_expr.size() && regex_expr[i + 1] == 'p' && regex_expr[i + 2] == '{' && regex_expr[i + 4] == '}') { const std::string pat = regex_expr.substr(i, 5); if (k_ucat_enum.find(pat) != k_ucat_enum.end()) { if (!inside) { regex_expr_collapsed += '['; } regex_expr_collapsed += k_ucat_cpt.at(k_ucat_enum.at(pat)); regex_expr_collapsed += k_ucat_map.at(k_ucat_enum.at(pat)); if (!inside) { regex_expr_collapsed += ']'; } i += 4; continue; } } regex_expr_collapsed += regex_expr[i]; } //printf("text_collapsed: %s\n", text_collapsed.c_str()); //printf("regex_expr_collapsed: %s\n", regex_expr_collapsed.c_str()); bpe_offsets = unicode_regex_split_stl(text_collapsed, regex_expr_collapsed, bpe_offsets); } else { // no unicode category used, we can use std::wregex directly const std::wstring wregex_expr = unicode_wstring_from_utf8(regex_expr); // std::wregex \s does not mach non-ASCII whitespaces, using 0x0B as fallback std::wstring wtext(cpts.begin(), cpts.end()); for (size_t i = 0; i < wtext.size(); ++i) { if (wtext[i] > 0x7F && unicode_cpt_flags(wtext[i]).is_whitespace) { wtext[i] = 0x0B; } } //printf("text: %s\n", text.c_str()); //printf("regex_expr: %s\n", regex_expr.c_str()); bpe_offsets = unicode_regex_split_stl(wtext, wregex_expr, bpe_offsets); } } catch (std::regex_error & e) { fprintf(stderr, "Failed to process regex: '%s'\n", regex_expr.c_str()); fprintf(stderr, "Regex error: %s\n", e.what()); throw std::runtime_error("Failed to process regex"); } } std::vector<std::string> bpe_words; bpe_words.reserve(bpe_offsets.size()); // reserve memory for the approximate size size_t start = 0; for (size_t & offset : bpe_offsets) { bpe_words.emplace_back(); for (size_t i = start; i < start + offset; ++i) { bpe_words.back() += unicode_cpt_to_utf8(cpts[i]); } start += offset; } return unicode_byte_encoding_process(bpe_words); }