/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "pad.cuh" static __global__ void pad_f32(const float * x, float * dst, const int ne0, const int ne00, const int ne01, const int ne02, const int ne03) { // blockIdx.z: idx of ne2*ne3, aka ne02*ne03 // blockIdx.y: idx of ne1 // blockIDx.x: idx of ne0 / BLOCK_SIZE int nidx = threadIdx.x + blockIdx.x * blockDim.x; if (nidx >= ne0) { return; } // operation int offset_dst = nidx + blockIdx.y * ne0 + blockIdx.z * ne0 * gridDim.y; if (nidx < ne00 && blockIdx.y < ne01 && blockIdx.z < ne02*ne03) { int offset_src = nidx + blockIdx.y * ne00 + blockIdx.z * ne00 * ne01; dst[offset_dst] = x[offset_src]; } else { dst[offset_dst] = 0.0f; } } static void pad_f32_cuda(const float * x, float * dst, const int ne00, const int ne01, const int ne02, const int ne03, const int ne0, const int ne1, const int ne2, const int ne3, cudaStream_t stream) { int num_blocks = (ne0 + CUDA_PAD_BLOCK_SIZE - 1) / CUDA_PAD_BLOCK_SIZE; dim3 gridDim(num_blocks, ne1, ne2*ne3); pad_f32<<>>(x, dst, ne0, ne00, ne01, ne02, ne03); } void ggml_cuda_op_pad(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); GGML_ASSERT(src0->ne[3] == 1 && dst->ne[3] == 1); // just 3D tensors pad_f32_cuda(src0_d, dst_d, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], stream); }