package convert import ( "cmp" "encoding/binary" "io" "math" "strings" "sync" "github.com/ollama/ollama/llm" ) type phi3 struct { Parameters NumHiddenLayers uint32 `json:"num_hidden_layers"` NLayers uint32 `json:"n_layers"` HiddenSize uint32 `json:"hidden_size"` NEmbd uint32 `json:"n_embd"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NHead uint32 `json:"n_head"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` NHeadKV uint32 `json:"n_head_kv"` RopeTheta float32 `json:"rope_theta"` RopeScaling struct { Type string `json:"type"` LongFactor ropeFactor `json:"long_factor"` ShortFactor ropeFactor `json:"short_factor"` } `json:"rope_scaling"` RMSNormEPS float32 `json:"rms_norm_eps"` NPositions uint32 `json:"n_positions"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` OriginalMaxPositionEmbeddings uint32 `json:"original_max_position_embeddings"` SlidingWindow uint32 `json:"sliding_window"` } var _ Converter = (*phi3)(nil) func (p *phi3) KV(t *Tokenizer) llm.KV { kv := p.Parameters.KV(t) kv["general.architecture"] = "phi3" kv["general.name"] = "phi3" kv["phi3.context_length"] = p.MaxPositionEmbeddings kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) kv["phi3.feed_forward_length"] = p.IntermediateSize kv["phi3.block_count"] = cmp.Or(p.NumHiddenLayers, p.NLayers) kv["phi3.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) kv["phi3.attention.head_count_kv"] = cmp.Or(p.NumKeyValueHeads, p.NHeadKV) kv["phi3.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS kv["phi3.rope.dimension_count"] = p.HiddenSize / cmp.Or(p.NumAttentionHeads, p.NHead) kv["phi3.rope.freq_base"] = p.RopeTheta kv["phi3.rope.scaling.original_context_length"] = p.OriginalMaxPositionEmbeddings kv["phi3.attention.sliding_window"] = p.SlidingWindow scale := float64(p.MaxPositionEmbeddings) / float64(p.OriginalMaxPositionEmbeddings) switch p.RopeScaling.Type { case "": // no scaling case "su", "longrope": kv["phi3.rope.scaling.attn_factor"] = float32(max(math.Sqrt(1+math.Log(scale)/math.Log(float64(p.OriginalMaxPositionEmbeddings))), 1.0)) case "yarn": kv["phi3.rope.scaling.attn_factor"] = float32(max(0.1*math.Log(scale)+1.0, 1.0)) default: panic("unknown rope scaling type") } return kv } func (p *phi3) Tensors(ts []Tensor) []llm.Tensor { var addRopeFactors sync.Once out := make([]llm.Tensor, 0, len(ts)+2) for _, t := range ts { name := p.tensorName(t.Name()) if strings.HasPrefix(name, "blk.0.") { addRopeFactors.Do(func() { out = append(out, llm.Tensor{ Name: "rope_factors_long.weight", Kind: 0, Shape: []uint64{uint64(len(p.RopeScaling.LongFactor))}, WriterTo: p.RopeScaling.LongFactor, }, llm.Tensor{ Name: "rope_factors_short.weight", Kind: 0, Shape: []uint64{uint64(len(p.RopeScaling.ShortFactor))}, WriterTo: p.RopeScaling.ShortFactor, }) }) } out = append(out, llm.Tensor{ Name: name, Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *phi3) tensorName(n string) string { return strings.NewReplacer( "lm_head", "output", "model.embed_tokens", "token_embd", "model.norm", "output_norm", "model.layers", "blk", "input_layernorm", "attn_norm", "self_attn.qkv_proj", "attn_qkv", "self_attn.o_proj", "attn_output", "mlp.down_proj", "ffn_down", "mlp.gate_up_proj", "ffn_up", "post_attention_layernorm", "ffn_norm", ).Replace(n) } type ropeFactor []float32 func (r ropeFactor) WriteTo(w io.Writer) (int64, error) { err := binary.Write(w, binary.LittleEndian, r) return 0, err }