/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include "llama.h" #include "common.h" #include <string> #include <vector> // gpt_sampler extends llama_sampler with additional functionality: // // - grammar support // - custom sampler logic based on the parameters // - history of the last accepted tokens // - performance metrics // // This goal is to have a common implementation of the sampling logic shared across the examples. // For example, depending on the temperature, the sampling chain can be very simple (greedy) or more // complex (top-k, top-p, etc). // // Another example is related to the grammar. In general, the grammar constraints applied on the full // vocabulary can be very taxing. To improve performance, the grammar can be applied only to the sampled // token in order to verify if it fits the grammar. And only if the token doesn't fit the grammar, the // grammar constraints are applied to the full vocabulary and the token is resampled. // // The gpt_sampler also maintains a container with the last accepted tokens. In the future, this can // be moved into the core llama library. // // For convenience, the gpt_sampler also maintains a container with the current candidate tokens. // This can be used to access the probabilities of the rest of the non-sampled tokens. // // TODO: measure grammar performance // struct gpt_sampler; // llama_sampler API overloads struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params); void gpt_sampler_free(struct gpt_sampler * gsmpl); // if accept_grammar is true, the token is accepted both by the sampling chain and the grammar void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar); void gpt_sampler_reset (struct gpt_sampler * gsmpl); struct gpt_sampler * gpt_sampler_clone (struct gpt_sampler * gsmpl); // arguments can be nullptr to skip printing void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl); // extended sampling implementation: // // - set logits // - apply the configured sampler chain // - check if the token fits the grammar (if any) // - if not: resample by first applying the grammar constraints and then sampling again (slower path) // // if grammar_first is true, the grammar is applied before the samplers (slower) // useful in cases where all the resulting candidates (not just the sampled one) must fit the grammar // llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first = false); uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl); // helpers // access the internal list of current candidate tokens llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl); // get the last accepted token llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl); // print the sampler chain into a string std::string gpt_sampler_print(const struct gpt_sampler * gsmpl); // get a string representation of the last accepted tokens std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx, int n); char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr); std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr); std::vector<enum gpt_sampler_type> gpt_sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names); std::vector<enum gpt_sampler_type> gpt_sampler_types_from_chars(const std::string & chars);