/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "binbcast.cuh" #include static __device__ __forceinline__ float op_repeat(const float a, const float b) { return b; GGML_UNUSED(a); } static __device__ __forceinline__ float op_add(const float a, const float b) { return a + b; } static __device__ __forceinline__ float op_sub(const float a, const float b) { return a - b; } static __device__ __forceinline__ float op_mul(const float a, const float b) { return a * b; } static __device__ __forceinline__ float op_div(const float a, const float b) { return a / b; } template static __global__ void k_bin_bcast(const src0_t * src0, const src1_t * src1, dst_t * dst, int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13, /*int s0, */ int s1, int s2, int s3, /*int s00,*/ int s01, int s02, int s03, /*int s10,*/ int s11, int s12, int s13) { const int i0s = blockDim.x*blockIdx.x + threadIdx.x; const int i1 = (blockDim.y*blockIdx.y + threadIdx.y); const int i2 = (blockDim.z*blockIdx.z + threadIdx.z) / ne3; const int i3 = (blockDim.z*blockIdx.z + threadIdx.z) % ne3; if (i0s >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { return; } const int i11 = i1 % ne11; const int i12 = i2 % ne12; const int i13 = i3 % ne13; const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_dst = i3*s3 + i2*s2 + i1*s1; const src0_t * src0_row = src0 + i_src0; const src1_t * src1_row = src1 + i_src1; dst_t * dst_row = dst + i_dst; for (int i0 = i0s; i0 < ne0; i0 += blockDim.x*gridDim.x) { const int i10 = i0 % ne10; dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); } } template static __global__ void k_bin_bcast_unravel(const src0_t * src0, const src1_t * src1, dst_t * dst, int ne0, int ne1, int ne2, int ne3, int ne10, int ne11, int ne12, int ne13, /*int s0, */ int s1, int s2, int s3, /*int s00,*/ int s01, int s02, int s03, /*int s10,*/ int s11, int s12, int s13) { const int i = blockDim.x*blockIdx.x + threadIdx.x; const int i3 = i/(ne2*ne1*ne0); const int i2 = (i/(ne1*ne0)) % ne2; const int i1 = (i/ne0) % ne1; const int i0 = i % ne0; if (i0 >= ne0 || i1 >= ne1 || i2 >= ne2 || i3 >= ne3) { return; } const int i11 = i1 % ne11; const int i12 = i2 % ne12; const int i13 = i3 % ne13; const size_t i_src0 = i3*s03 + i2*s02 + i1*s01; const size_t i_src1 = i13*s13 + i12*s12 + i11*s11; const size_t i_dst = i3*s3 + i2*s2 + i1*s1; const src0_t * src0_row = src0 + i_src0; const src1_t * src1_row = src1 + i_src1; dst_t * dst_row = dst + i_dst; const int i10 = i0 % ne10; dst_row[i0] = (dst_t)bin_op(src0 ? (float)src0_row[i0] : 0.0f, (float)src1_row[i10]); } template static __global__ void k_repeat_back( const T * __restrict__ src, T * __restrict__ dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne0, const int64_t ne1, const int64_t ne2) { const int64_t tid0 = (int64_t) blockIdx.x*blockDim.x + threadIdx.x; const int64_t tid1 = (int64_t) blockIdx.y*blockDim.y + threadIdx.y; const int64_t tid2 = (int64_t) blockIdx.z*blockDim.z + threadIdx.z; if (tid0 >= ne0) { return; } T sum = 0; for (int64_t i2 = tid2; i2 < ne02; i2 += ne2) { for (int64_t i1 = tid1; i1 < ne01; i1 += ne1) { for (int64_t i0 = tid0; i0 < ne00; i0 += ne0) { sum += src[i2*ne01*ne00 + i1*ne00 + i0]; } } } dst[tid2*ne1*ne0 + tid1*ne0 + tid0] = sum; } template struct bin_bcast_cuda { template void operator()(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst, const src0_t * src0_dd, const src1_t * src1_dd, dst_t * dst_dd, cudaStream_t stream) { GGML_TENSOR_BINARY_OP_LOCALS int nr0 = ne10/ne0; int nr1 = ne11/ne1; int nr2 = ne12/ne2; int nr3 = ne13/ne3; int nr[4] = { nr0, nr1, nr2, nr3 }; // collapse dimensions until first broadcast dimension int64_t cne[] = {ne0, ne1, ne2, ne3}; int64_t cne0[] = {ne00, ne01, ne02, ne03}; int64_t cne1[] = {ne10, ne11, ne12, ne13}; size_t cnb[] = {nb0, nb1, nb2, nb3}; size_t cnb0[] = {nb00, nb01, nb02, nb03}; size_t cnb1[] = {nb10, nb11, nb12, nb13}; auto collapse = [](int64_t cne[]) { cne[0] *= cne[1]; cne[1] = cne[2]; cne[2] = cne[3]; cne[3] = 1; }; auto collapse_nb = [](size_t cnb[], const int64_t cne[]) { cnb[1] *= cne[1]; cnb[2] *= cne[2]; cnb[3] *= cne[3]; }; if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ggml_is_contiguous(dst)) { for (int i = 0; i < 4; i++) { if (nr[i] != 1) { break; } if (i > 0) { collapse_nb(cnb, cne); collapse_nb(cnb0, cne0); collapse_nb(cnb1, cne1); collapse(cne); collapse(cne0); collapse(cne1); } } } { int64_t ne0 = cne[0]; int64_t ne1 = cne[1]; int64_t ne2 = cne[2]; int64_t ne3 = cne[3]; //int64_t ne00 = cne0[0]; GGML_UNUSED(ne00); //int64_t ne01 = cne0[1]; GGML_UNUSED(ne01); //int64_t ne02 = cne0[2]; GGML_UNUSED(ne02); //int64_t ne03 = cne0[3]; GGML_UNUSED(ne03); int64_t ne10 = cne1[0]; int64_t ne11 = cne1[1]; int64_t ne12 = cne1[2]; int64_t ne13 = cne1[3]; size_t nb0 = cnb[0]; size_t nb1 = cnb[1]; size_t nb2 = cnb[2]; size_t nb3 = cnb[3]; size_t nb00 = cnb0[0]; size_t nb01 = cnb0[1]; size_t nb02 = cnb0[2]; size_t nb03 = cnb0[3]; size_t nb10 = cnb1[0]; size_t nb11 = cnb1[1]; size_t nb12 = cnb1[2]; size_t nb13 = cnb1[3]; size_t s0 = nb0 / sizeof(dst_t); size_t s1 = nb1 / sizeof(dst_t); size_t s2 = nb2 / sizeof(dst_t); size_t s3 = nb3 / sizeof(dst_t); size_t s10 = nb10 / sizeof(src1_t); size_t s11 = nb11 / sizeof(src1_t); size_t s12 = nb12 / sizeof(src1_t); size_t s13 = nb13 / sizeof(src1_t); size_t s00 = nb00 / sizeof(src0_t); size_t s01 = nb01 / sizeof(src0_t); size_t s02 = nb02 / sizeof(src0_t); size_t s03 = nb03 / sizeof(src0_t); GGML_ASSERT(nb0 % sizeof(dst_t) == 0); GGML_ASSERT(nb1 % sizeof(dst_t) == 0); GGML_ASSERT(nb2 % sizeof(dst_t) == 0); GGML_ASSERT(nb3 % sizeof(dst_t) == 0); GGML_ASSERT(nb00 % sizeof(src0_t) == 0); GGML_ASSERT(nb01 % sizeof(src0_t) == 0); GGML_ASSERT(nb02 % sizeof(src0_t) == 0); GGML_ASSERT(nb03 % sizeof(src0_t) == 0); GGML_ASSERT(nb10 % sizeof(src1_t) == 0); GGML_ASSERT(nb11 % sizeof(src1_t) == 0); GGML_ASSERT(nb12 % sizeof(src1_t) == 0); GGML_ASSERT(nb13 % sizeof(src1_t) == 0); GGML_ASSERT(s0 == 1); GGML_ASSERT(s00 == 1); GGML_ASSERT(s10 == 1); const int block_size = 128; int64_t hne0 = std::max(ne0/2LL, 1LL); dim3 block_dims; block_dims.x = std::min(hne0, block_size); block_dims.y = std::min(ne1, block_size / block_dims.x); block_dims.z = std::min(std::min(ne2*ne3, block_size / block_dims.x / block_dims.y), 64U); dim3 block_nums( (hne0 + block_dims.x - 1) / block_dims.x, (ne1 + block_dims.y - 1) / block_dims.y, (ne2*ne3 + block_dims.z - 1) / block_dims.z ); if (block_nums.z > 65535) { // this is the maximum number of blocks in z dimension, fallback to 1D grid kernel int block_num = (ne0*ne1*ne2*ne3 + block_size - 1) / block_size; k_bin_bcast_unravel<<>>( src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, /* s0, */ s1, s2, s3, /* s00, */ s01, s02, s03, /* s10, */ s11, s12, s13); } else { k_bin_bcast<<>>( src0_dd, src1_dd, dst_dd, ne0, ne1, ne2, ne3, ne10, ne11, ne12, ne13, /* s0, */ s1, s2, s3, /* s00, */ s01, s02, s03, /* s10, */ s11, s12, s13); } } } }; template static void repeat_back_cuda( const T * src, T * dst, const int64_t ne00, const int64_t ne01, const int64_t ne02, const int64_t ne0, const int64_t ne1, const int64_t ne2, cudaStream_t stream) { const dim3 block_dims(WARP_SIZE, 1, 1); const dim3 block_nums((ne0 + WARP_SIZE - 1) / WARP_SIZE, ne1, ne2); k_repeat_back<<>>(src, dst, ne00, ne01, ne02, ne0, ne1, ne2); } template static void ggml_cuda_op_bin_bcast( const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const void * src0_dd, const void * src1_dd, void * dst_dd, cudaStream_t stream) { GGML_ASSERT(src1->type == GGML_TYPE_F32); if (src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) { op()(src0, src1, dst, (const float *)src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F16) { op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (half *) dst_dd, stream); } else if (src0->type == GGML_TYPE_F16 && dst->type == GGML_TYPE_F32) { op()(src0, src1, dst, (const half *) src0_dd, (const float *)src1_dd, (float *)dst_dd, stream); } else { fprintf(stderr, "%s: unsupported types: dst: %s, src0: %s, src1: %s\n", __func__, ggml_type_name(dst->type), ggml_type_name(src0->type), ggml_type_name(src1->type)); GGML_ABORT("fatal error"); } } void ggml_cuda_op_repeat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst, dst->src[0], dst, nullptr, dst->src[0]->data, dst->data, ctx.stream()); } void ggml_cuda_op_add(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); } void ggml_cuda_op_sub(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); } void ggml_cuda_op_mul(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); } void ggml_cuda_op_div(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { ggml_cuda_op_bin_bcast>(dst->src[0], dst->src[1], dst, dst->src[0]->data, dst->src[1]->data, dst->data, ctx.stream()); } void ggml_cuda_op_repeat_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; GGML_ASSERT(src0->type == dst->type); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(dst)); GGML_ASSERT(ggml_can_repeat(dst, src0)); cudaStream_t stream = ctx.stream(); const int64_t ne00 = src0->ne[0]; const int64_t ne01 = src0->ne[1]; const int64_t ne02 = src0->ne[2]; GGML_ASSERT(src0->ne[3] == 1); const int64_t ne0 = dst->ne[0]; const int64_t ne1 = dst->ne[1]; const int64_t ne2 = dst->ne[2]; GGML_ASSERT(dst->ne[3] == 1); switch (dst->type) { case GGML_TYPE_F32: { const float * src0_d = (const float *) src0->data; float * dst_d = (float *) dst->data; repeat_back_cuda(src0_d, dst_d, ne00, ne01, ne02, ne0, ne1, ne2, stream); } break; default: { GGML_ASSERT(false); } break; } }