package convert import ( "strings" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/ollama/ollama/llm" ) type gemmaModel struct { ModelParameters MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` HiddenSize uint32 `json:"hidden_size"` HiddenLayers uint32 `json:"num_hidden_layers"` IntermediateSize uint32 `json:"intermediate_size"` NumAttentionHeads uint32 `json:"num_attention_heads"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RMSNormEPS float32 `json:"rms_norm_eps"` HeadDim uint32 `json:"head_dim"` } var _ ModelConverter = (*gemmaModel)(nil) func (p *gemmaModel) KV(t *Tokenizer) llm.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "gemma" kv["gemma.context_length"] = p.MaxPositionEmbeddings kv["gemma.embedding_length"] = p.HiddenSize kv["gemma.block_count"] = p.HiddenLayers kv["gemma.feed_forward_length"] = p.IntermediateSize kv["gemma.attention.head_count"] = p.NumAttentionHeads kv["gemma.attention.head_count_kv"] = p.NumKeyValueHeads kv["gemma.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS kv["gemma.attention.key_length"] = p.HeadDim kv["gemma.attention.value_length"] = p.HeadDim kv["tokenizer.ggml.eot_token_id"] = uint32(107) kv["tokenizer.ggml.middle_token_id"] = uint32(68) kv["tokenizer.ggml.prefix_token_id"] = uint32(67) kv["tokenizer.ggml.suffix_token_id"] = uint32(69) return kv } func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor { var out []llm.Tensor for _, t := range ts { if strings.HasSuffix(t.Name(), "_norm.weight") { t.SetRepacker(p.addOne) } out = append(out, llm.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *gemmaModel) Replacements() []string { return []string{ "model.embed_tokens", "token_embd", "model.norm", "output_norm", "model.layers", "blk", "input_layernorm", "attn_norm", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.gate_proj", "ffn_gate", "mlp.down_proj", "ffn_down", "mlp.up_proj", "ffn_up", "post_attention_layernorm", "ffn_norm", } } func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) { n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data)) ones := tensor.Ones(tensor.Float32, int(shape[0])) n, err := n.Add(ones) if err != nil { return nil, err } ts, err := native.SelectF32(n, 0) if err != nil { return nil, err } var f32s []float32 for _, t := range ts { f32s = append(f32s, t...) } return f32s, nil }