// MIT License // Copyright (c) 2023 go-skynet authors // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //go:generate cmake -S . -B build //go:generate cmake --build build package llama // #cgo LDFLAGS: -Lbuild -lbinding -lllama -lggml_static -lstdc++ // #cgo darwin LDFLAGS: -framework Accelerate -framework Foundation -framework Metal -framework MetalKit -framework MetalPerformanceShaders // #cgo darwin CXXFLAGS: -std=c++11 // #include "binding/binding.h" import "C" import ( "fmt" "os" "strings" "sync" "unsafe" ) type LLama struct { state unsafe.Pointer embeddings bool contextSize int } func New(model string, opts ...ModelOption) (*LLama, error) { mo := NewModelOptions(opts...) modelPath := C.CString(model) result := C.load_model(modelPath, C.int(mo.ContextSize), C.int(mo.Seed), C.bool(mo.F16Memory), C.bool(mo.MLock), C.bool(mo.Embeddings), C.bool(mo.MMap), C.bool(mo.LowVRAM), C.bool(mo.VocabOnly), C.int(mo.NGPULayers), C.int(mo.NBatch), C.CString(mo.MainGPU), C.CString(mo.TensorSplit), C.bool(mo.NUMA)) if result == nil { return nil, fmt.Errorf("failed loading model") } ll := &LLama{state: result, contextSize: mo.ContextSize, embeddings: mo.Embeddings} return ll, nil } func (l *LLama) Free() { C.llama_binding_free_model(l.state) } func (l *LLama) LoadState(state string) error { d := C.CString(state) w := C.CString("rb") result := C.load_state(l.state, d, w) if result != 0 { return fmt.Errorf("error while loading state") } return nil } func (l *LLama) SaveState(dst string) error { d := C.CString(dst) w := C.CString("wb") C.save_state(l.state, d, w) _, err := os.Stat(dst) return err } // Token Embeddings func (l *LLama) TokenEmbeddings(tokens []int, opts ...PredictOption) ([]float32, error) { if !l.embeddings { return []float32{}, fmt.Errorf("model loaded without embeddings") } po := NewPredictOptions(opts...) outSize := po.Tokens if po.Tokens == 0 { outSize = 9999999 } floats := make([]float32, outSize) myArray := (*C.int)(C.malloc(C.size_t(len(tokens)) * C.sizeof_int)) // Copy the values from the Go slice to the C array for i, v := range tokens { (*[1<<31 - 1]int32)(unsafe.Pointer(myArray))[i] = int32(v) } params := C.llama_allocate_params(C.CString(""), C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat), C.bool(po.IgnoreEOS), C.bool(po.F16KV), C.int(po.Batch), C.int(po.NKeep), nil, C.int(0), C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty), C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias), C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap), C.CString(po.MainGPU), C.CString(po.TensorSplit), C.bool(po.PromptCacheRO), ) ret := C.get_token_embeddings(params, l.state, myArray, C.int(len(tokens)), (*C.float)(&floats[0])) if ret != 0 { return floats, fmt.Errorf("embedding inference failed") } return floats, nil } // Embeddings func (l *LLama) Embeddings(text string, opts ...PredictOption) ([]float32, error) { if !l.embeddings { return []float32{}, fmt.Errorf("model loaded without embeddings") } po := NewPredictOptions(opts...) input := C.CString(text) if po.Tokens == 0 { po.Tokens = 99999999 } floats := make([]float32, po.Tokens) reverseCount := len(po.StopPrompts) reversePrompt := make([]*C.char, reverseCount) var pass **C.char for i, s := range po.StopPrompts { cs := C.CString(s) reversePrompt[i] = cs pass = &reversePrompt[0] } params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat), C.bool(po.IgnoreEOS), C.bool(po.F16KV), C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount), C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty), C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias), C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap), C.CString(po.MainGPU), C.CString(po.TensorSplit), C.bool(po.PromptCacheRO), ) ret := C.get_embeddings(params, l.state, (*C.float)(&floats[0])) if ret != 0 { return floats, fmt.Errorf("embedding inference failed") } return floats, nil } func (l *LLama) Eval(text string, opts ...PredictOption) error { po := NewPredictOptions(opts...) input := C.CString(text) if po.Tokens == 0 { po.Tokens = 99999999 } reverseCount := len(po.StopPrompts) reversePrompt := make([]*C.char, reverseCount) var pass **C.char for i, s := range po.StopPrompts { cs := C.CString(s) reversePrompt[i] = cs pass = &reversePrompt[0] } params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat), C.bool(po.IgnoreEOS), C.bool(po.F16KV), C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount), C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty), C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias), C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap), C.CString(po.MainGPU), C.CString(po.TensorSplit), C.bool(po.PromptCacheRO), ) ret := C.eval(params, l.state, input) if ret != 0 { return fmt.Errorf("inference failed") } C.llama_free_params(params) return nil } func (l *LLama) Predict(text string, opts ...PredictOption) (string, error) { po := NewPredictOptions(opts...) if po.TokenCallback != nil { setCallback(l.state, po.TokenCallback) } input := C.CString(text) if po.Tokens == 0 { po.Tokens = 99999999 } out := make([]byte, po.Tokens) reverseCount := len(po.StopPrompts) reversePrompt := make([]*C.char, reverseCount) var pass **C.char for i, s := range po.StopPrompts { cs := C.CString(s) reversePrompt[i] = cs pass = &reversePrompt[0] } params := C.llama_allocate_params(input, C.int(po.Seed), C.int(po.Threads), C.int(po.Tokens), C.int(po.TopK), C.float(po.TopP), C.float(po.Temperature), C.float(po.Penalty), C.int(po.Repeat), C.bool(po.IgnoreEOS), C.bool(po.F16KV), C.int(po.Batch), C.int(po.NKeep), pass, C.int(reverseCount), C.float(po.TailFreeSamplingZ), C.float(po.TypicalP), C.float(po.FrequencyPenalty), C.float(po.PresencePenalty), C.int(po.Mirostat), C.float(po.MirostatETA), C.float(po.MirostatTAU), C.bool(po.PenalizeNL), C.CString(po.LogitBias), C.CString(po.PathPromptCache), C.bool(po.PromptCacheAll), C.bool(po.MLock), C.bool(po.MMap), C.CString(po.MainGPU), C.CString(po.TensorSplit), C.bool(po.PromptCacheRO), ) ret := C.llama_predict(params, l.state, (*C.char)(unsafe.Pointer(&out[0])), C.bool(po.DebugMode)) if ret != 0 { return "", fmt.Errorf("inference failed") } res := C.GoString((*C.char)(unsafe.Pointer(&out[0]))) res = strings.TrimPrefix(res, " ") res = strings.TrimPrefix(res, text) res = strings.TrimPrefix(res, "\n") for _, s := range po.StopPrompts { res = strings.TrimRight(res, s) } C.llama_free_params(params) if po.TokenCallback != nil { setCallback(l.state, nil) } return res, nil } // CGo only allows us to use static calls from C to Go, we can't just dynamically pass in func's. // This is the next best thing, we register the callbacks in this map and call tokenCallback from // the C code. We also attach a finalizer to LLama, so it will unregister the callback when the // garbage collection frees it. // SetTokenCallback registers a callback for the individual tokens created when running Predict. It // will be called once for each token. The callback shall return true as long as the model should // continue predicting the next token. When the callback returns false the predictor will return. // The tokens are just converted into Go strings, they are not trimmed or otherwise changed. Also // the tokens may not be valid UTF-8. // Pass in nil to remove a callback. // // It is save to call this method while a prediction is running. func (l *LLama) SetTokenCallback(callback func(token string) bool) { setCallback(l.state, callback) } var ( m sync.Mutex callbacks = map[uintptr]func(string) bool{} ) //export tokenCallback func tokenCallback(statePtr unsafe.Pointer, token *C.char) bool { m.Lock() defer m.Unlock() if callback, ok := callbacks[uintptr(statePtr)]; ok { return callback(C.GoString(token)) } return true } // setCallback can be used to register a token callback for LLama. Pass in a nil callback to // remove the callback. func setCallback(statePtr unsafe.Pointer, callback func(string) bool) { m.Lock() defer m.Unlock() if callback == nil { delete(callbacks, uintptr(statePtr)) } else { callbacks[uintptr(statePtr)] = callback } }