# Ollama Model File > [!NOTE] > `Modelfile` syntax is in development A model file is the blueprint to create and share models with Ollama. ## Table of Contents - [Format](#format) - [Examples](#examples) - [Instructions](#instructions) - [FROM (Required)](#from-required) - [Build from llama3.1](#build-from-llama31) - [Build from a Safetensors model](#build-from-a-safetensors-model) - [Build from a GGUF file](#build-from-a-gguf-file) - [PARAMETER](#parameter) - [Valid Parameters and Values](#valid-parameters-and-values) - [TEMPLATE](#template) - [Template Variables](#template-variables) - [SYSTEM](#system) - [ADAPTER](#adapter) - [LICENSE](#license) - [MESSAGE](#message) - [Notes](#notes) ## Format The format of the `Modelfile`: ```modelfile # comment INSTRUCTION arguments ``` | Instruction | Description | | ----------------------------------- | -------------------------------------------------------------- | | [`FROM`](#from-required) (required) | Defines the base model to use. | | [`PARAMETER`](#parameter) | Sets the parameters for how Ollama will run the model. | | [`TEMPLATE`](#template) | The full prompt template to be sent to the model. | | [`SYSTEM`](#system) | Specifies the system message that will be set in the template. | | [`ADAPTER`](#adapter) | Defines the (Q)LoRA adapters to apply to the model. | | [`LICENSE`](#license) | Specifies the legal license. | | [`MESSAGE`](#message) | Specify message history. | ## Examples ### Basic `Modelfile` An example of a `Modelfile` creating a mario blueprint: ```modelfile FROM llama3 # sets the temperature to 1 [higher is more creative, lower is more coherent] PARAMETER temperature 1 # sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token PARAMETER num_ctx 4096 # sets a custom system message to specify the behavior of the chat assistant SYSTEM You are Mario from super mario bros, acting as an assistant. ``` To use this: 1. Save it as a file (e.g. `Modelfile`) 2. `ollama create choose-a-model-name -f <location of the file e.g. ./Modelfile>'` 3. `ollama run choose-a-model-name` 4. Start using the model! More examples are available in the [examples directory](../examples). To view the Modelfile of a given model, use the `ollama show --modelfile` command. ```bash > ollama show --modelfile llama3 # Modelfile generated by "ollama show" # To build a new Modelfile based on this one, replace the FROM line with: # FROM llama3:latest FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29 TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|> {{ .System }}<|eot_id|>{{ end }}{{ if .Prompt }}<|start_header_id|>user<|end_header_id|> {{ .Prompt }}<|eot_id|>{{ end }}<|start_header_id|>assistant<|end_header_id|> {{ .Response }}<|eot_id|>""" PARAMETER stop "<|start_header_id|>" PARAMETER stop "<|end_header_id|>" PARAMETER stop "<|eot_id|>" PARAMETER stop "<|reserved_special_token" ``` ## Instructions ### FROM (Required) The `FROM` instruction defines the base model to use when creating a model. ```modelfile FROM <model name>:<tag> ``` #### Build from llama3.1 ```modelfile FROM llama3.1 ``` A list of available base models: <https://github.com/ollama/ollama#model-library> Additional models can be found at: <https://ollama.com/library> #### Build from a Safetensors model ```modelfile FROM <model directory> ``` The model directory should contain the Safetensors weights for a supported architecture. Currently supported model architectures: * Llama (including Llama 2, Llama 3, and Llama 3.1) * Mistral (including Mistral 1, Mistral 2, and Mixtral) * Gemma (including Gemma 1 and Gemma 2) * Phi3 #### Build from a GGUF file ```modelfile FROM ./ollama-model.bin ``` The GGUF bin file location should be specified as an absolute path or relative to the `Modelfile` location. ### PARAMETER The `PARAMETER` instruction defines a parameter that can be set when the model is run. ```modelfile PARAMETER <parameter> <parametervalue> ``` #### Valid Parameters and Values | Parameter | Description | Value Type | Example Usage | | -------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | ---------- | -------------------- | | mirostat | Enable Mirostat sampling for controlling perplexity. (default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0) | int | mirostat 0 | | mirostat_eta | Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. (Default: 0.1) | float | mirostat_eta 0.1 | | mirostat_tau | Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. (Default: 5.0) | float | mirostat_tau 5.0 | | num_ctx | Sets the size of the context window used to generate the next token. (Default: 2048) | int | num_ctx 4096 | | repeat_last_n | Sets how far back for the model to look back to prevent repetition. (Default: 64, 0 = disabled, -1 = num_ctx) | int | repeat_last_n 64 | | repeat_penalty | Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. (Default: 1.1) | float | repeat_penalty 1.1 | | temperature | The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8) | float | temperature 0.7 | | seed | Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. (Default: 0) | int | seed 42 | | stop | Sets the stop sequences to use. When this pattern is encountered the LLM will stop generating text and return. Multiple stop patterns may be set by specifying multiple separate `stop` parameters in a modelfile. | string | stop "AI assistant:" | | tfs_z | Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. (default: 1) | float | tfs_z 1 | | num_predict | Maximum number of tokens to predict when generating text. (Default: 128, -1 = infinite generation, -2 = fill context) | int | num_predict 42 | | top_k | Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40) | int | top_k 40 | | top_p | Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9) | float | top_p 0.9 | | min_p | Alternative to the top_p, and aims to ensure a balance of quality and variety. The parameter *p* represents the minimum probability for a token to be considered, relative to the probability of the most likely token. For example, with *p*=0.05 and the most likely token having a probability of 0.9, logits with a value less than 0.045 are filtered out. (Default: 0.0) | float | min_p 0.05 | ### TEMPLATE `TEMPLATE` of the full prompt template to be passed into the model. It may include (optionally) a system message, a user's message and the response from the model. Note: syntax may be model specific. Templates use Go [template syntax](https://pkg.go.dev/text/template). #### Template Variables | Variable | Description | | ----------------- | --------------------------------------------------------------------------------------------- | | `{{ .System }}` | The system message used to specify custom behavior. | | `{{ .Prompt }}` | The user prompt message. | | `{{ .Response }}` | The response from the model. When generating a response, text after this variable is omitted. | ``` TEMPLATE """{{ if .System }}<|im_start|>system {{ .System }}<|im_end|> {{ end }}{{ if .Prompt }}<|im_start|>user {{ .Prompt }}<|im_end|> {{ end }}<|im_start|>assistant """ ``` ### SYSTEM The `SYSTEM` instruction specifies the system message to be used in the template, if applicable. ```modelfile SYSTEM """<system message>""" ``` ### ADAPTER The `ADAPTER` instruction specifies a fine tuned LoRA adapter that should apply to the base model. The value of the adapter should be an absolute path or a path relative to the Modelfile. The base model should be specified with a `FROM` instruction. If the base model is not the same as the base model that the adapter was tuned from the behaviour will be erratic. #### Safetensor adapter ```modelfile ADAPTER <path to safetensor adapter> ``` Currently supported Safetensor adapters: * Llama (including Llama 2, Llama 3, and Llama 3.1) * Mistral (including Mistral 1, Mistral 2, and Mixtral) * Gemma (including Gemma 1 and Gemma 2) #### GGUF adapter ```modelfile ADAPTER ./ollama-lora.bin ``` ### LICENSE The `LICENSE` instruction allows you to specify the legal license under which the model used with this Modelfile is shared or distributed. ```modelfile LICENSE """ <license text> """ ``` ### MESSAGE The `MESSAGE` instruction allows you to specify a message history for the model to use when responding. Use multiple iterations of the MESSAGE command to build up a conversation which will guide the model to answer in a similar way. ```modelfile MESSAGE <role> <message> ``` #### Valid roles | Role | Description | | --------- | ------------------------------------------------------------ | | system | Alternate way of providing the SYSTEM message for the model. | | user | An example message of what the user could have asked. | | assistant | An example message of how the model should respond. | #### Example conversation ```modelfile MESSAGE user Is Toronto in Canada? MESSAGE assistant yes MESSAGE user Is Sacramento in Canada? MESSAGE assistant no MESSAGE user Is Ontario in Canada? MESSAGE assistant yes ``` ## Notes - the **`Modelfile` is not case sensitive**. In the examples, uppercase instructions are used to make it easier to distinguish it from arguments. - Instructions can be in any order. In the examples, the `FROM` instruction is first to keep it easily readable. [1]: https://ollama.com/library