package llm import ( "encoding/binary" "errors" "fmt" "io" "slices" "strings" "sync" "github.com/ollama/ollama/util/bufioutil" ) type GGML struct { container model } type model interface { KV() KV Tensors() *Tensors } type KV map[string]any func (kv KV) u64(key string) uint64 { switch v := kv[key].(type) { case uint64: return v case uint32: return uint64(v) case float64: return uint64(v) default: return 0 } } func (kv KV) Architecture() string { if s, ok := kv["general.architecture"].(string); ok { return s } return "unknown" } func (kv KV) Kind() string { if s, ok := kv["general.type"].(string); ok { return s } return "unknown" } func (kv KV) ParameterCount() uint64 { return kv.u64("general.parameter_count") } func (kv KV) FileType() fileType { if u64 := kv.u64("general.file_type"); u64 > 0 { return fileType(uint32(u64)) } return fileTypeUnknown } func (kv KV) BlockCount() uint64 { return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture())) } func (kv KV) HeadCount() uint64 { return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture())) } func (kv KV) HeadCountKV() uint64 { if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 { return headCountKV } return 1 } func (kv KV) EmbeddingHeadCount() uint64 { if heads := kv.HeadCount(); heads > 0 { return kv.EmbeddingLength() / kv.HeadCount() } return 0 } func (kv KV) EmbeddingHeadCountK() uint64 { if k := kv.u64(fmt.Sprintf("%s.attention.key_length", kv.Architecture())); k > 0 { return k } return kv.EmbeddingHeadCount() } func (kv KV) EmbeddingHeadCountV() uint64 { if v := kv.u64(fmt.Sprintf("%s.attention.value_length", kv.Architecture())); v > 0 { return v } return kv.EmbeddingHeadCount() } func (kv KV) GQA() uint64 { return kv.HeadCount() / kv.HeadCountKV() } func (kv KV) EmbeddingLength() uint64 { return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture())) } func (kv KV) ContextLength() uint64 { return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture())) } func (kv KV) ChatTemplate() string { s, _ := kv["tokenizer.chat_template"].(string) return s } type Tensors struct { Items []*Tensor Offset uint64 layers map[string]Layer layersOnce sync.Once } func (ts *Tensors) Layers() map[string]Layer { ts.layersOnce.Do(func() { ts.layers = make(map[string]Layer) for _, t := range ts.Items { parts := strings.Split(t.Name, ".") if index := slices.IndexFunc(parts, func(s string) bool { return s == "blk" || s == "mm" }); index != -1 { if len(parts) > index+2 { // blk and mm should have a number after them, join it parts = append( []string{strings.Join(parts[:index+2], ".")}, parts[index+2:]...) } } if _, ok := ts.layers[parts[0]]; !ok { ts.layers[parts[0]] = make(Layer) } ts.layers[parts[0]][strings.Join(parts[1:], ".")] = t } }) return ts.layers } type Layer map[string]*Tensor func (l Layer) size() (size uint64) { for _, t := range l { size += t.Size() } return size } type Tensor struct { Name string `json:"name"` Kind uint32 `json:"kind"` Offset uint64 `json:"-"` // Shape is the number of elements in each dimension Shape []uint64 `json:"shape"` io.WriterTo `json:"-"` } func (t Tensor) block() (n int) { if _, err := fmt.Sscanf(t.Name, "blk.%d.", &n); err != nil { return -1 } return } func (t Tensor) blockSize() uint64 { switch t.Kind { case 0, 1, 24, 25, 26, 27, 28, 30: // F32, F16, I8, I16, I32, I64, F64, BF16 return 1 case 2, 3, 4, 5, 6, 7, 8, 9, 20: // Q4_0, Q4_1, Q5_0, Q5_1, Q8_0, Q8_1, IQ4_NL return 32 default: // All others return 256 } } func (t Tensor) typeSize() uint64 { blockSize := t.blockSize() switch t.Kind { case 0: // FP32 return 4 case 1: // FP16 return 2 case 2: // Q4_0 return 2 + blockSize/2 case 3: // Q4_1 return 2 + 2 + blockSize/2 case 6: // Q5_0 return 2 + 4 + blockSize/2 case 7: // Q5_1 return 2 + 2 + 4 + blockSize/2 case 8: // Q8_0 return 2 + blockSize case 9: // Q8_1 return 4 + 4 + blockSize case 10: // Q2_K return blockSize/16 + blockSize/4 + 2 + 2 case 11: // Q3_K return blockSize/8 + blockSize/4 + 12 + 2 case 12: // Q4_K return 2 + 2 + 12 + blockSize/2 case 13: // Q5_K return 2 + 2 + 12 + blockSize/8 + blockSize/2 case 14: // Q6_K return blockSize/2 + blockSize/4 + blockSize/16 + 2 case 15: // Q8_K return 2 + blockSize + 2*blockSize/16 case 16: // IQ2_XXS return 2 + 2*blockSize/8 case 17: // IQ2_XS return 2 + 2*blockSize/8 + blockSize/32 case 18: // IQ3_XXS return 2 + blockSize/4 + blockSize/8 case 19: // IQ1_S return 2 + blockSize/8 + blockSize/16 case 20: // IQ4_NL return 2 + blockSize/2 case 21: // IQ3_S return 2 + blockSize/4 + blockSize/8 + blockSize/32 + 4 case 22: // IQ2_S return 2 + blockSize/4 + blockSize/16 case 23: // IQ4_XS return 2 + 2 + blockSize/2 + blockSize/64 case 24: // I8 return 1 case 25: // I16 return 2 case 26: // I32 return 4 case 27: // I64 return 8 case 28: // F64 return 8 case 29: // IQ1_M return blockSize/8 + blockSize/16 + blockSize/32 case 30: // BF16 return 2 default: return 0 } } func (t Tensor) parameters() uint64 { var count uint64 = 1 for _, n := range t.Shape { count *= n } return count } func (t Tensor) Size() uint64 { return t.parameters() * t.typeSize() / t.blockSize() } type container interface { Name() string Decode(io.ReadSeeker) (model, error) } const ( // Magic constant for `ggml` files (unversioned). FILE_MAGIC_GGML = 0x67676d6c // Magic constant for `ggml` files (versioned, ggmf). FILE_MAGIC_GGMF = 0x67676d66 // Magic constant for `ggml` files (versioned, ggjt). FILE_MAGIC_GGJT = 0x67676a74 // Magic constant for `ggla` files (LoRA adapter). FILE_MAGIC_GGLA = 0x67676C61 // Magic constant for `gguf` files (versioned, gguf) FILE_MAGIC_GGUF_LE = 0x46554747 FILE_MAGIC_GGUF_BE = 0x47475546 ) var ErrUnsupportedFormat = errors.New("unsupported model format") func DetectGGMLType(b []byte) string { switch binary.LittleEndian.Uint32(b[:4]) { case FILE_MAGIC_GGML: return "ggml" case FILE_MAGIC_GGMF: return "ggmf" case FILE_MAGIC_GGJT: return "ggjt" case FILE_MAGIC_GGLA: return "ggla" case FILE_MAGIC_GGUF_LE, FILE_MAGIC_GGUF_BE: return "gguf" default: return "" } } // DecodeGGML decodes a GGML model from the given reader. // // It collects array values for arrays with a size less than or equal to // maxArraySize. If maxArraySize is 0, the default value of 1024 is used. If // the maxArraySize is negative, all arrays are collected. func DecodeGGML(rs io.ReadSeeker, maxArraySize int) (*GGML, int64, error) { if maxArraySize == 0 { maxArraySize = 1024 } rs = bufioutil.NewBufferedSeeker(rs, 32<<10) var magic uint32 if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { return nil, 0, err } var c container switch magic { case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT: return nil, 0, ErrUnsupportedFormat case FILE_MAGIC_GGLA: c = &containerGGLA{} case FILE_MAGIC_GGUF_LE: c = &containerGGUF{ByteOrder: binary.LittleEndian, maxArraySize: maxArraySize} case FILE_MAGIC_GGUF_BE: c = &containerGGUF{ByteOrder: binary.BigEndian, maxArraySize: maxArraySize} default: return nil, 0, errors.New("invalid file magic") } model, err := c.Decode(rs) if err != nil { return nil, 0, err } offset, err := rs.Seek(0, io.SeekCurrent) if err != nil { return nil, 0, err } // final model type return &GGML{ container: c, model: model, }, offset, nil } func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) { embedding := llm.KV().EmbeddingLength() heads := llm.KV().HeadCount() headsKV := llm.KV().HeadCountKV() vocab := uint64(llm.KV()["tokenizer.ggml.tokens"].(*array).size) embeddingHeads := llm.KV().EmbeddingHeadCount() embeddingHeadsK := llm.KV().EmbeddingHeadCountK() layers := llm.Tensors().Layers() switch llm.KV().Architecture() { case "llama": fullOffload = max( 4*batch*(1+4*embedding+context*(1+heads)), 4*batch*(embedding+vocab), ) partialOffload = 4 * batch * embedding partialOffload += max( 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embeddingHeads*headsKV), 4*batch*(embedding+vocab)+embedding*vocab*105/128, ) if ffnGateExpsWeight, ok := layers["blk.0"]["ffn_gate_exps.weight"]; ok { // mixtral 8x22b ff := uint64(llm.KV()["llama.feed_forward_length"].(uint32)) partialOffload = max( 3*ffnGateExpsWeight.Size()+4*batch*(2*ff+headsKV+embedding+context+embeddingHeads*headsKV), 4*(context*batch*heads+context*embeddingHeads*headsKV+batch*1024+embeddingHeads*headsKV*batch), ) } else if ffnGateWeight, ok := layers["blk.0"]["ffn_gate.0.weight"]; ok { // mixtral 8x7b ffnGateWeight1 := ffnGateWeight.Shape[1] fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1) partialOffload = max( 4*batch*(3+embeddingHeads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16, 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16), ) } case "mllama": var visionTokens, tiles uint64 = 1601, 4 fullOffload = max( 4*batch*(2+3*embedding+embeddingHeadsK*heads+context*(1+heads)), // vocab graph 4*batch*(embedding+vocab), ) var ropeFreqsCount uint64 if ropeFreqs, ok := llm.Tensors().Layers()["rope_freqs"]; ok { if ropeFreqsWeights, ok := ropeFreqs["weights"]; ok { ropeFreqsCount = ropeFreqsWeights.parameters() } } partialOffload = max( 4*(batch* (2*embedding+1+context*(1+heads)+embeddingHeadsK*heads)+ ropeFreqsCount+ embeddingHeadsK*context*headsKV), // vocab graph 4*batch*(embedding+vocab)+embedding*vocab*105/128, ) case "gemma", "gemma2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(2+context+context*heads+2*embedding+2*embeddingHeadsK*heads), ) partialOffload = max( 4*embedding*batch+embedding*vocab*105/128+4*vocab*batch, 4*batch*(2*embedding+1+2*embeddingHeadsK*heads+context+context*heads)+ 4*embeddingHeadsK*context*8+ embedding*embeddingHeadsK*heads*9/16, ) case "command-r": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(2+4*embedding+context*(1+heads)), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16, ) case "qwen2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+2*embedding+context+context*heads), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)), ) case "phi2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+4*embedding+context+context*heads), ) partialOffload = max( 4*batch*(2*embedding+vocab)+embedding*vocab*105/128, 4*batch*(2+3*embedding+context+context*heads), ) case "stablelm": fullOffload = 4 * batch * (context*(1+heads) + 3*embedding + 2) partialOffload = max( 4*batch*(vocab+2*embedding), fullOffload, ) case "deepseek2": fullOffload = max( 4*batch*(3*embedding+vocab), 4*batch*(3*embedding+2+context*(1+headsKV)+2*embeddingHeadsK*headsKV), ) partialOffload = max( 4*batch*(3*embedding+vocab)+embedding*vocab*105/128, 4*batch*(2*embedding+1+2*embeddingHeadsK*headsKV+context+context*headsKV)+4*embeddingHeadsK*context*headsKV+embedding*embeddingHeadsK*headsKV*9/16, ) case "chatglm": fullOffload = 4 * batch * (embedding + vocab) partialOffload = 4*batch*(embedding+vocab) + embedding*vocab*105/128 if qkvBias, ok := layers["blk.0"]["attn_qkv.bias"]; ok { fullOffload = max( fullOffload, 4*batch*(2+ 2*embedding+ context+ context*heads+ embeddingHeadsK*heads+ qkvBias.Shape[0]), ) partialOffload = max( partialOffload, 4*batch*(1+ 2*embedding+ embeddingHeadsK*heads+ context+ context*heads)+ 4*embeddingHeadsK*context+ 4*context*embeddingHeadsK+ 4*qkvBias.Shape[0], ) } } return }