/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "common.cuh" #include "fattn-common.cuh" template // D == head size #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) __launch_bounds__(D, 1) #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) static __global__ void flash_attn_vec_ext_f16( const char * __restrict__ Q, const char * __restrict__ K, const char * __restrict__ V, const char * __restrict__ mask, float * __restrict__ dst, float2 * __restrict__ dst_meta, const float scale, const float max_bias, const float m0, const float m1, const uint32_t n_head_log2, const float logit_softcap, const int ne00, const int ne01, const int ne02, const int ne03, const int ne10, const int ne11, const int ne12, const int ne13, const int ne31, const int nb31, const int nb01, const int nb02, const int nb03, const int nb11, const int nb12, const int nb13, const int nb21, const int nb22, const int nb23, const int ne0, const int ne1, const int ne2, const int ne3) { #ifdef FP16_AVAILABLE // Skip unused kernel variants for faster compilation: if (use_logit_softcap && !(D == 128 || D == 256)) { NO_DEVICE_CODE; return; } //In this kernel Q, K, V are matrices while i, j, k are matrix indices. constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16(type_K); constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16; constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V); const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. Q += nb02* blockIdx.y + nb01*ic0; K += nb12*(blockIdx.y / gqa_ratio); V += nb22*(blockIdx.y / gqa_ratio); const half * maskh = (const half *) mask + ne11*ic0; const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1); const half slopeh = __float2half(slopef); static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); constexpr int nwarps = D / WARP_SIZE; const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; __builtin_assume(tid < D); __shared__ half KQ[ncols*D]; half2 * KQ2 = (half2 *) KQ; half kqmax[ncols]; #pragma unroll for (int j = 0; j < ncols; ++j) { kqmax[j] = -HALF_MAX_HALF; } half kqsum[ncols] = {0.0f}; __shared__ half kqmax_shared[ncols][WARP_SIZE]; __shared__ half kqsum_shared[ncols][WARP_SIZE]; #pragma unroll for (int j = 0; j < ncols; ++j) { if (threadIdx.y == 0) { kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF; kqsum_shared[j][threadIdx.x] = 0.0f; } } __syncthreads(); // Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers: half2 Q_h2[ncols][D/(2*WARP_SIZE)]; int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)]; half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1]; if (Q_q8_1) { #pragma unroll for (int j0 = 0; j0 < ncols; j0 += nwarps) { const int j = j0 + threadIdx.y; if (j0 + nwarps > ncols && j >= ncols) { break; } // Reuse KQ as temporary storage for converting Q to q8_1: int * tmp_q_i32 = (int *) &KQ[j*D]; half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int)); // Set memory to zero if out of bounds: if (ncols > 2 && ic0 + j >= ne01) { #pragma unroll for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; tmp_q_i32[i] = 0; } if (threadIdx.x < D/QK8_1) { tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f); } continue; } const float * Q_f = (const float *) (Q + j*nb01); #pragma unroll for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { quantize_q8_1_to_shared(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds); } } __syncthreads(); #pragma unroll for (int j = 0; j < ncols; ++j) { int * tmp_q_i32 = (int *) &KQ[j*D]; half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int)); #pragma unroll for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i]; Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1]; } } __syncthreads(); } else { #pragma unroll for (int j = 0; j < ncols; ++j) { const float2 * Q_f2_j = (const float2 *) (Q + j*nb01); #pragma unroll for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f); Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y); } } } #pragma unroll for (int j = 0; j < ncols; ++j) { KQ[j*D + tid] = -HALF_MAX_HALF; } half2 VKQ[ncols] = {{0.0f, 0.0f}}; const int k_start = parallel_blocks == 1 ? 0 : ip*D; for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { // Calculate KQ tile and keep track of new maximum KQ values: // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression, // see https://github.com/ggerganov/llama.cpp/pull/7061 . // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable). half kqmax_new = kqmax[0]; half kqmax_new_arr[ncols]; #pragma unroll for (int j = 0; j < ncols; ++j) { kqmax_new_arr[j] = kqmax[j]; } #pragma unroll for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { const int i_KQ = i_KQ_0 + threadIdx.y; if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { break; } #pragma unroll for (int j = 0; j < ncols; ++j) { half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]); sum = warp_reduce_sum(sum); if (use_logit_softcap) { sum = logit_softcap*tanhf(sum); } sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f); if (ncols == 1) { kqmax_new = ggml_cuda_hmax(kqmax_new, sum); } else { kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum); } if (threadIdx.x == 0) { KQ[j*D + i_KQ] = sum; } } } #pragma unroll for (int j = 0; j < ncols; ++j) { half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j]; kqmax_new_j = warp_reduce_max(kqmax_new_j); if (threadIdx.x == 0) { kqmax_shared[j][threadIdx.y] = kqmax_new_j; } } __syncthreads(); #pragma unroll for (int j = 0; j < ncols; ++j) { half kqmax_new_j = kqmax_shared[j][threadIdx.x]; kqmax_new_j = warp_reduce_max(kqmax_new_j); const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j); kqmax[j] = kqmax_new_j; const half val = hexp(KQ[j*D + tid] - kqmax[j]); kqsum[j] = kqsum[j]*KQ_max_scale + val; KQ[j*D + tid] = val; VKQ[j] *= __half2half2(KQ_max_scale); } __syncthreads(); #pragma unroll for (int k0 = 0; k0 < D; k0 += 2) { if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) { break; } half2 V_k; reinterpret_cast(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid); reinterpret_cast(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid); #pragma unroll for (int j = 0; j < ncols; ++j) { VKQ[j] += V_k*KQ2[j*(D/2) + k0/2]; } } __syncthreads(); } #pragma unroll for (int j = 0; j < ncols; ++j) { kqsum[j] = warp_reduce_sum(kqsum[j]); if (threadIdx.x == 0) { kqsum_shared[j][threadIdx.y] = kqsum[j]; } } __syncthreads(); #pragma unroll for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { if (ncols > 2 && ic0 + j_VKQ >= ne01) { break; } kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ])); if (parallel_blocks == 1) { dst_val /= kqsum[j_VKQ]; } const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; } if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) { dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]); } #else NO_DEVICE_CODE; #endif // FP16_AVAILABLE } template void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { constexpr int nwarps = D/WARP_SIZE; fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16; constexpr bool need_f16_K = D != 128; constexpr bool need_f16_V = D != 128 && D != 64; launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block, need_f16_K, need_f16_V); } template void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * KQV = dst; const ggml_tensor * Q = dst->src[0]; const ggml_tensor * K = dst->src[1]; const ggml_tensor * V = dst->src[2]; const int32_t precision = KQV->op_params[3]; GGML_ASSERT(precision == GGML_PREC_DEFAULT); GGML_ASSERT(K->type == type_K); GGML_ASSERT(V->type == type_V); float logit_softcap; memcpy(&logit_softcap, (const float *) KQV->op_params + 2, sizeof(float)); if (Q->ne[1] == 1) { constexpr int cols_per_block = 1; constexpr int parallel_blocks = 4; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } else { constexpr bool use_logit_softcap = true; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } return; } if (Q->ne[1] == 2) { constexpr int cols_per_block = 2; constexpr int parallel_blocks = 4; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } else { constexpr bool use_logit_softcap = true; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } return; } if (Q->ne[1] <= 4) { constexpr int cols_per_block = 4; constexpr int parallel_blocks = 4; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } else { constexpr bool use_logit_softcap = true; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } return; } if (Q->ne[1] <= 8) { constexpr int cols_per_block = 8; constexpr int parallel_blocks = 4; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } else { constexpr bool use_logit_softcap = true; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } return; } constexpr int cols_per_block = 8; constexpr int parallel_blocks = 1; if (logit_softcap == 0.0f) { constexpr bool use_logit_softcap = false; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } else { constexpr bool use_logit_softcap = true; ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst); } } #define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \ template void ggml_cuda_flash_attn_ext_vec_f16_case \ (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \ extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16); extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);