package llm import ( "encoding/binary" "errors" "fmt" "io" "strings" ) type GGML struct { container model } const ( fileTypeF32 uint32 = iota fileTypeF16 fileTypeQ4_0 fileTypeQ4_1 fileTypeQ4_1_F16 fileTypeQ8_0 uint32 = iota + 2 fileTypeQ5_0 fileTypeQ5_1 fileTypeQ2_K fileTypeQ3_K_S fileTypeQ3_K_M fileTypeQ3_K_L fileTypeQ4_K_S fileTypeQ4_K_M fileTypeQ5_K_S fileTypeQ5_K_M fileTypeQ6_K fileTypeIQ2_XXS fileTypeIQ2_XS fileTypeQ2_K_S fileTypeQ3_K_XS fileTypeIQ3_XXS ) func fileType(fileType uint32) string { switch fileType { case fileTypeF32: return "F32" case fileTypeF16: return "F16" case fileTypeQ4_0: return "Q4_0" case fileTypeQ4_1: return "Q4_1" case fileTypeQ4_1_F16: return "Q4_1_F16" case fileTypeQ8_0: return "Q8_0" case fileTypeQ5_0: return "Q5_0" case fileTypeQ5_1: return "Q5_1" case fileTypeQ2_K: return "Q2_K" case fileTypeQ3_K_S: return "Q3_K_S" case fileTypeQ3_K_M: return "Q3_K_M" case fileTypeQ3_K_L: return "Q3_K_L" case fileTypeQ4_K_S: return "Q4_K_S" case fileTypeQ4_K_M: return "Q4_K_M" case fileTypeQ5_K_S: return "Q5_K_S" case fileTypeQ5_K_M: return "Q5_K_M" case fileTypeQ6_K: return "Q6_K" case fileTypeIQ2_XXS: return "IQ2_XXS" case fileTypeIQ2_XS: return "IQ2_XS" case fileTypeQ2_K_S: return "Q2_K_S" case fileTypeQ3_K_XS: return "Q3_K_XS" case fileTypeIQ3_XXS: return "IQ3_XXS" default: return "unknown" } } type model interface { KV() KV Tensors() Tensors } type KV map[string]any func (kv KV) u64(key string) uint64 { switch v := kv[key].(type) { case uint64: return v case uint32: return uint64(v) case float64: return uint64(v) default: return 0 } } func (kv KV) Architecture() string { if s, ok := kv["general.architecture"].(string); ok { return s } return "unknown" } func (kv KV) ParameterCount() uint64 { return kv.u64("general.parameter_count") } func (kv KV) FileType() string { if u64 := kv.u64("general.file_type"); u64 > 0 { return fileType(uint32(u64)) } return "unknown" } func (kv KV) BlockCount() uint64 { return kv.u64(fmt.Sprintf("%s.block_count", kv.Architecture())) } func (kv KV) HeadCount() uint64 { return kv.u64(fmt.Sprintf("%s.attention.head_count", kv.Architecture())) } func (kv KV) HeadCountKV() uint64 { if headCountKV := kv.u64(fmt.Sprintf("%s.attention.head_count_kv", kv.Architecture())); headCountKV > 0 { return headCountKV } return 1 } func (kv KV) GQA() uint64 { return kv.HeadCount() / kv.HeadCountKV() } func (kv KV) EmbeddingLength() uint64 { return kv.u64(fmt.Sprintf("%s.embedding_length", kv.Architecture())) } func (kv KV) ContextLength() uint64 { return kv.u64(fmt.Sprintf("%s.context_length", kv.Architecture())) } type Tensors []*Tensor func (ts Tensors) Layers() map[string]Layer { layers := make(map[string]Layer) for _, t := range ts { parts := strings.Split(t.Name, ".") if parts[0] == "blk" { parts = parts[1:] } if _, ok := layers[parts[0]]; !ok { layers[parts[0]] = make(Layer) } layers[parts[0]][strings.Join(parts[1:], ".")] = t } return layers } type Layer map[string]*Tensor func (l Layer) size() (size uint64) { for _, t := range l { size += t.size() } return size } type Tensor struct { Name string `json:"name"` Kind uint32 `json:"kind"` Offset uint64 `json:"-"` // Shape is the number of elements in each dimension Shape []uint64 `json:"shape"` io.WriterTo `json:"-"` } func (t Tensor) blockSize() uint64 { switch { case t.Kind < 2: return 1 case t.Kind < 10: return 32 default: return 256 } } func (t Tensor) typeSize() uint64 { blockSize := t.blockSize() switch t.Kind { case 0: // FP32 return 4 case 1: // FP16 return 2 case 2: // Q4_0 return 2 + blockSize/2 case 3: // Q4_1 return 2 + 2 + blockSize/2 case 6: // Q5_0 return 2 + 4 + blockSize/2 case 7: // Q5_1 return 2 + 2 + 4 + blockSize/2 case 8: // Q8_0 return 2 + blockSize case 9: // Q8_1 return 4 + 4 + blockSize case 10: // Q2_K return blockSize/16 + blockSize/4 + 2 + 2 case 11: // Q3_K return blockSize/8 + blockSize/4 + 12 + 2 case 12: // Q4_K return 2 + 2 + 12 + blockSize/2 case 13: // Q5_K return 2 + 2 + 12 + blockSize/8 + blockSize/2 case 14: // Q6_K return blockSize/2 + blockSize/4 + blockSize/16 + 2 case 15: // Q8_K return 2 + blockSize + 2*blockSize/16 case 16: // IQ2_XXS return 2 + 2*blockSize/8 case 17: // IQ2_XS return 2 + 2*blockSize/8 + blockSize/32 case 18: // IQ3_XXS return 2 + 3*blockSize/8 default: return 0 } } func (t Tensor) parameters() uint64 { var count uint64 = 1 for _, n := range t.Shape { count *= n } return count } func (t Tensor) size() uint64 { return t.parameters() * t.typeSize() / t.blockSize() } type container interface { Name() string Decode(io.ReadSeeker) (model, error) } const ( // Magic constant for `ggml` files (unversioned). FILE_MAGIC_GGML = 0x67676d6c // Magic constant for `ggml` files (versioned, ggmf). FILE_MAGIC_GGMF = 0x67676d66 // Magic constant for `ggml` files (versioned, ggjt). FILE_MAGIC_GGJT = 0x67676a74 // Magic constant for `ggla` files (LoRA adapter). FILE_MAGIC_GGLA = 0x67676C61 // Magic constant for `gguf` files (versioned, gguf) FILE_MAGIC_GGUF_LE = 0x46554747 FILE_MAGIC_GGUF_BE = 0x47475546 ) var ErrUnsupportedFormat = errors.New("unsupported model format") func DecodeGGML(rs io.ReadSeeker) (*GGML, int64, error) { var magic uint32 if err := binary.Read(rs, binary.LittleEndian, &magic); err != nil { return nil, 0, err } var c container switch magic { case FILE_MAGIC_GGML, FILE_MAGIC_GGMF, FILE_MAGIC_GGJT: return nil, 0, ErrUnsupportedFormat case FILE_MAGIC_GGLA: c = &containerGGLA{} case FILE_MAGIC_GGUF_LE: c = &containerGGUF{ByteOrder: binary.LittleEndian} case FILE_MAGIC_GGUF_BE: c = &containerGGUF{ByteOrder: binary.BigEndian} default: return nil, 0, errors.New("invalid file magic") } model, err := c.Decode(rs) if errors.Is(err, io.EOF) { // noop } else if err != nil { return nil, 0, err } offset, err := rs.Seek(0, io.SeekCurrent) if err != nil { return nil, 0, err } // final model type return &GGML{ container: c, model: model, }, offset, nil } func (llm GGML) GraphSize(context, batch uint64) (partialOffload, fullOffload uint64) { embedding := llm.KV().EmbeddingLength() heads := llm.KV().HeadCount() headsKV := llm.KV().HeadCountKV() vocab := uint64(len(llm.KV()["tokenizer.ggml.tokens"].([]any))) layers := llm.Tensors().Layers() switch llm.KV().Architecture() { case "llama": fullOffload = 4 * batch * (1 + 4*embedding + context*(1+heads)) partialOffload = 4 * batch * embedding partialOffload += max( 4*batch*(1+embedding+max(context, embedding))+embedding*embedding*9/16+4*context*(batch*heads+embedding/heads*headsKV), 4*batch*(embedding+vocab)+embedding*vocab*105/128, ) if ffnGateWeight, ok := layers["0"]["ffn_gate.0.weight"]; ok { ffnGateWeight1 := ffnGateWeight.Shape[1] fullOffload = 4 * batch * (2 + 3*embedding + context*(1+heads) + 2*headsKV + ffnGateWeight1) partialOffload = max( 4*batch*(3+embedding/heads*headsKV+embedding+context*(1+heads)+ffnGateWeight1)+(embedding*embedding+3*embedding*headsKV*ffnGateWeight1)*9/16, 4*batch*(1+2*embedding+context*(1+heads))+embedding*(6*context*headsKV/heads+embedding*9/16), ) } case "gemma": fullOffload = 4 * batch * (embedding + vocab) partialOffload = 4*batch*(2*embedding+vocab+1) + embedding*vocab*105/128 case "command-r": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(2+4*embedding+context*(1+heads)), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*batch*(1+2*embedding+context*(1+heads))+4*embedding*context+embedding*embedding*9/16, ) case "qwen2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+2*embedding+context+context*heads), ) partialOffload = max( 4*batch*(embedding+vocab)+embedding*vocab*105/128, 4*(batch*(1+2*embedding+context*(1+heads))+embedding*(1+context)), ) case "phi2": fullOffload = max( 4*batch*(embedding+vocab), 4*batch*(1+4*embedding+context+context*heads), ) partialOffload = 4*batch*(2*embedding+vocab) + embedding*vocab*105/128 } return }