package llm import ( "bytes" "encoding/binary" "errors" "fmt" "io" "log/slog" "os" "regexp" "github.com/d4l3k/go-bfloat16" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/x448/float16" "github.com/jmorganca/ollama/format" ) type ContainerGGUF struct { ByteOrder binary.ByteOrder Version uint32 V1 struct { NumTensor uint32 NumKV uint32 } V2 struct { NumTensor uint64 NumKV uint64 } V3 struct { NumTensor uint64 NumKV uint64 } } func (c *ContainerGGUF) Name() string { return "gguf" } func (c *ContainerGGUF) Decode(rso *readSeekOffset) (model, error) { binary.Read(rso, c.ByteOrder, &c.Version) switch c.Version { case 1: binary.Read(rso, c.ByteOrder, &c.V1) default: binary.Read(rso, c.ByteOrder, &c.V2) } model := NewGGUFModel(c) if err := model.Decode(rso); err != nil { return nil, err } return model, nil } const ( _ uint32 = iota GGUFTokenNormal GGUFTokenUnknown GGUFTokenControl GGUFTokenUserDefined GGUFTokenUnused GGUFTokenByte ) const ( GGUFTypeUint8 uint32 = iota GGUFTypeInt8 GGUFTypeUint16 GGUFTypeInt16 GGUFTypeUint32 GGUFTypeInt32 GGUFTypeFloat32 GGUFTypeBool GGUFTypeString GGUFTypeArray GGUFTypeUint64 GGUFTypeInt64 GGUFTypeFloat64 ) type KV map[string]any type Tensor struct { Name string Kind uint32 Offset uint64 // shape is the number of elements in each dimension Shape []uint64 FileName string OffsetPadding uint64 FileOffsets []uint64 } func (t Tensor) BlockSize() uint64 { switch { case t.Kind < 2: return 1 case t.Kind < 10: return 32 default: return 256 } } func (t Tensor) TypeSize() uint64 { blockSize := t.BlockSize() switch t.Kind { case 0: // FP32 return 4 case 1: // FP16 return 2 case 2: // Q4_0 return 2 + blockSize/2 case 3: // Q4_1 return 2 + 2 + blockSize/2 case 6: // Q5_0 return 2 + 4 + blockSize/2 case 7: // Q5_1 return 2 + 2 + 4 + blockSize/2 case 8: // Q8_0 return 2 + blockSize case 9: // Q8_1 return 4 + 4 + blockSize case 10: // Q2_K return blockSize/16 + blockSize/4 + 2 + 2 case 11: // Q3_K return blockSize/8 + blockSize/4 + 12 + 2 case 12: // Q4_K return 2 + 2 + 12 + blockSize/2 case 13: // Q5_K return 2 + 2 + 12 + blockSize/8 + blockSize/2 case 14: // Q6_K return blockSize/2 + blockSize/4 + blockSize/16 + 2 case 15: // Q8_K return 2 + blockSize + 2*blockSize/16 case 16: // IQ2_XXS return 2 + 2*blockSize/8 case 17: // IQ2_XS return 2 + 2*blockSize/8 + blockSize/32 case 18: // IQ3_XXS return 2 + 3*blockSize/8 default: return 0 } } func (t Tensor) Parameters() uint64 { var count uint64 = 1 for _, n := range t.Shape { count *= n } return count } func (t Tensor) Size() uint64 { return t.Parameters() * t.TypeSize() / t.BlockSize() } func (t Tensor) Repack(data []uint16, heads int) ([]uint16, error) { n := tensor.New(tensor.WithShape(int(t.Shape[0]), int(t.Shape[1])), tensor.WithBacking(data)) origShape := n.Shape().Clone() // reshape the tensor and swap axes 1 and 2 to unpack the layer for gguf if err := n.Reshape(heads, 2, origShape[0]/heads/2, origShape[1]); err != nil { return []uint16{}, err } if err := n.T(0, 2, 1, 3); err != nil { return []uint16{}, err } if err := n.Reshape(origShape...); err != nil { return []uint16{}, err } if err := n.Transpose(); err != nil { return []uint16{}, err } newN, err := native.SelectU16(n, 1) if err != nil { return []uint16{}, err } var fullTensor []uint16 for _, v := range newN { fullTensor = append(fullTensor, v...) } return fullTensor, nil } type GGUFModel struct { *ContainerGGUF KV Tensors []Tensor parameters uint64 } func NewGGUFModel(container *ContainerGGUF) *GGUFModel { return &GGUFModel{ ContainerGGUF: container, KV: make(KV), } } func (llm *GGUFModel) NumTensor() uint64 { if llm.Version == 1 { return uint64(llm.V1.NumTensor) } return llm.V2.NumTensor } func (llm *GGUFModel) NumKV() uint64 { if llm.Version == 1 { return uint64(llm.V1.NumKV) } return llm.V2.NumKV } func (llm *GGUFModel) ModelFamily() string { if t, ok := llm.KV["general.architecture"].(string); ok { return t } return "unknown" } func (llm *GGUFModel) ModelType() string { if llm.parameters > 0 { return format.HumanNumber(llm.parameters) } return "unknown" } func (llm *GGUFModel) FileType() string { if t, ok := llm.KV["general.file_type"].(uint32); ok { return fileType(t) } return "unknown" } func (llm *GGUFModel) Encode(f *os.File) error { // this mimics the order of the llama.cpp convert script kOrder := []string{ "general.architecture", "general.name", "llama.context_length", "llama.embedding_length", "llama.block_count", "llama.feed_forward_length", "llama.rope.dimension_count", "llama.attention.head_count", "llama.attention.head_count_kv", "llama.attention.layer_norm_rms_epsilon", "llama.rope.freq_base", "general.file_type", "tokenizer.ggml.model", "tokenizer.ggml.tokens", "tokenizer.ggml.scores", "tokenizer.ggml.token_type", "tokenizer.ggml.bos_token_id", "tokenizer.ggml.eos_token_id", "tokenizer.ggml.unknown_token_id", "tokenizer.ggml.add_bos_token", "tokenizer.ggml.add_eos_token", "tokenizer.chat_template", } if err := binary.Write(f, llm.ByteOrder, []byte("GGUF")); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint32(3)); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(llm.V3.NumTensor)); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(llm.V3.NumKV)); err != nil { return err } for _, k := range kOrder { val, ok := llm.KV[k] if !ok { continue } if err := binary.Write(f, llm.ByteOrder, uint64(len(k))); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, []byte(k)); err != nil { return err } switch v := val.(type) { case uint32: if err := binary.Write(f, llm.ByteOrder, GGUFTypeUint32); err != nil { return err } if err := llm.writeUint32(f, v); err != nil { return err } case float32: if err := binary.Write(f, llm.ByteOrder, GGUFTypeFloat32); err != nil { return err } if err := llm.writeF32(f, v); err != nil { return err } case bool: if err := binary.Write(f, llm.ByteOrder, GGUFTypeBool); err != nil { return err } if err := llm.writeBool(f, v); err != nil { return err } case string: if err := binary.Write(f, llm.ByteOrder, GGUFTypeString); err != nil { return err } if err := llm.writeString(f, v); err != nil { return err } case []int32: if err := binary.Write(f, llm.ByteOrder, GGUFTypeArray); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, GGUFTypeInt32); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(len(v))); err != nil { return err } for _, i := range v { if err := llm.writeInt32(f, i); err != nil { return err } } case []uint32: if err := binary.Write(f, llm.ByteOrder, GGUFTypeArray); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, GGUFTypeUint32); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(len(v))); err != nil { return err } for _, i := range v { if err := llm.writeUint32(f, i); err != nil { return err } } case []float32: if err := binary.Write(f, llm.ByteOrder, GGUFTypeArray); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, GGUFTypeFloat32); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(len(v))); err != nil { return err } for _, fl := range v { if err := llm.writeF32(f, fl); err != nil { return err } } case []string: if err := binary.Write(f, llm.ByteOrder, GGUFTypeArray); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, GGUFTypeString); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(len(v))); err != nil { return err } for _, s := range v { if err := llm.writeString(f, s); err != nil { return err } } } } // write layer metadata for _, t := range llm.Tensors { if err := llm.writeString(f, t.Name); err != nil { return err } // the dimensions of the tensor dims := 1 if t.Shape[1] > 0 { dims = 2 } if err := binary.Write(f, llm.ByteOrder, uint32(dims)); err != nil { return err } for i := 0; i < dims; i++ { if err := binary.Write(f, llm.ByteOrder, uint64(t.Shape[dims-1-i])); err != nil { return err } } if err := binary.Write(f, llm.ByteOrder, uint32(t.Kind)); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, uint64(t.Offset)); err != nil { return err } } offset, terr := f.Seek(0, io.SeekCurrent) if terr != nil { return terr } slog.Debug(fmt.Sprintf("tensors offset = %x", offset)) if err := llm.writePadding(f, 32); err != nil { return err } var dataFile *os.File var currentFile string var err error for _, t := range llm.Tensors { if currentFile != t.FileName { if f != nil { dataFile.Close() } currentFile = t.FileName dataFile, err = os.Open(t.FileName) if err != nil { fmt.Println(err) return err } } dataFile.Seek(int64(t.OffsetPadding+t.FileOffsets[0]), 0) pattern := `^blk\.[0-9]+\.attn_(?Pq|k)\.weight$` re, err := regexp.Compile(pattern) if err != nil { return err } matches := re.FindAllStringSubmatch(t.Name, -1) if len(matches) > 0 { layerSize := t.FileOffsets[1] - t.FileOffsets[0] var err error tData := make([]uint16, layerSize/2) if err = binary.Read(dataFile, llm.ByteOrder, tData); err != nil { return err } layerType := matches[0][re.SubexpIndex("layer")] var heads uint32 switch layerType { case "q": heads = llm.KV["llama.attention.head_count"].(uint32) case "k": heads = llm.KV["llama.attention.head_count_kv"].(uint32) if heads == 0 { heads = llm.KV["llama.attention.head_count"].(uint32) } } tData, err = t.Repack(tData, int(heads)) if err != nil { return err } var buf []byte for _, n := range tData { buf = binary.LittleEndian.AppendUint16(buf, n) } tempBuf := make([]uint16, len(tData)) tDataF32 := bfloat16.DecodeFloat32(buf) for cnt, v := range tDataF32 { tDataF16 := float16.Fromfloat32(v) tempBuf[cnt] = uint16(tDataF16) } if err = binary.Write(f, llm.ByteOrder, tempBuf); err != nil { return err } if err := llm.writePadding(f, 32); err != nil { return err } continue } remaining := t.FileOffsets[1] - t.FileOffsets[0] bufSize := uint64(10240) var finished bool for { data := make([]byte, min(bufSize, remaining)) b, err := io.ReadFull(dataFile, data) remaining -= uint64(b) if errors.Is(err, io.EOF) || remaining <= 0 { finished = true } else if err != nil { return err } // convert bfloat16 -> ieee float32 tDataF32 := bfloat16.DecodeFloat32(data) switch t.Kind { case 0: if err := binary.Write(f, llm.ByteOrder, tDataF32); err != nil { return err } case 1: // convert float32 -> float16 tempBuf := make([]uint16, len(data)/2) for cnt, v := range tDataF32 { tDataF16 := float16.Fromfloat32(v) tempBuf[cnt] = uint16(tDataF16) } if err := binary.Write(f, llm.ByteOrder, tempBuf); err != nil { return err } } if finished { break } } if err := llm.writePadding(f, 32); err != nil { return err } } f.Close() return nil } func (llm *GGUFModel) writePadding(f *os.File, align int64) error { // gguf file padding is defined in https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#file-structure offset, err := f.Seek(0, io.SeekCurrent) if err != nil { return err } padding := ((offset + align - 1) / align) * align buf := make([]byte, padding-offset) if err := binary.Write(f, llm.ByteOrder, buf); err != nil { return err } return nil } func (llm *GGUFModel) writeInt32(f *os.File, v int32) error { if err := binary.Write(f, llm.ByteOrder, v); err != nil { return err } return nil } func (llm *GGUFModel) writeUint32(f *os.File, v uint32) error { if err := binary.Write(f, llm.ByteOrder, v); err != nil { return err } return nil } func (llm *GGUFModel) writeF32(f *os.File, v float32) error { if err := binary.Write(f, llm.ByteOrder, v); err != nil { return err } return nil } func (llm *GGUFModel) writeBool(f *os.File, b bool) error { if err := binary.Write(f, llm.ByteOrder, b); err != nil { return err } return nil } func (llm *GGUFModel) writeString(f *os.File, s string) error { if err := binary.Write(f, llm.ByteOrder, uint64(len(s))); err != nil { return err } if err := binary.Write(f, llm.ByteOrder, []byte(s)); err != nil { return err } return nil } func (llm *GGUFModel) Decode(rso *readSeekOffset) error { // decode key-values for i := 0; uint64(i) < llm.NumKV(); i++ { k, err := llm.readString(rso) if err != nil { return err } vtype := llm.readU32(rso) var v any switch vtype { case GGUFTypeUint8: v = llm.readU8(rso) case GGUFTypeInt8: v = llm.readI8(rso) case GGUFTypeUint16: v = llm.readU16(rso) case GGUFTypeInt16: v = llm.readI16(rso) case GGUFTypeUint32: v = llm.readU32(rso) case GGUFTypeInt32: v = llm.readI32(rso) case GGUFTypeUint64: v = llm.readU64(rso) case GGUFTypeInt64: v = llm.readI64(rso) case GGUFTypeFloat32: v = llm.readF32(rso) case GGUFTypeFloat64: v = llm.readF64(rso) case GGUFTypeBool: v = llm.readBool(rso) case GGUFTypeString: s, err := llm.readString(rso) if err != nil { return err } v = s case GGUFTypeArray: a, err := llm.readArray(rso) if err != nil { return err } v = a default: return fmt.Errorf("invalid type: %d", vtype) } llm.KV[k] = v } // decode tensors for i := 0; uint64(i) < llm.NumTensor(); i++ { name, err := llm.readString(rso) if err != nil { return err } // dims is the number of dimensions in the tensor dims := llm.readU32(rso) shape := [4]uint64{1, 1, 1, 1} for i := 0; uint32(i) < dims; i++ { shape[i] = llm.readU64(rso) } tensor := Tensor{ Name: name, Kind: llm.readU32(rso), Offset: llm.readU64(rso), Shape: shape[:], } llm.Tensors = append(llm.Tensors, tensor) llm.parameters += tensor.Parameters() } alignment, ok := llm.KV["general.alignment"].(uint32) if !ok { alignment = 32 } rso.Seek(int64(alignment)-rso.offset%int64(alignment), io.SeekCurrent) for _, tensor := range llm.Tensors { padded := (int64(tensor.Size()) + int64(alignment) - 1) & ^(int64(alignment) - 1) rso.Seek(padded, io.SeekCurrent) } return nil } func (llm *GGUFModel) NumLayers() uint32 { value, exists := llm.KV[fmt.Sprintf("%s.block_count", llm.ModelFamily())] if !exists { return 0 } return value.(uint32) } func (llm *GGUFModel) NumHead() uint32 { value, exists := llm.KV[fmt.Sprintf("%s.attention.head_count", llm.ModelFamily())] if !exists { return 0 } return value.(uint32) } func (llm *GGUFModel) NumEmbed() uint32 { value, exists := llm.KV[fmt.Sprintf("%s.embedding_length", llm.ModelFamily())] if !exists { return 0 } return value.(uint32) } func (llm *GGUFModel) NumHeadKv() uint32 { value, exists := llm.KV[fmt.Sprintf("%s.attention.head_count_kv", llm.ModelFamily())] if !exists { return 0 } return value.(uint32) } func (llm *GGUFModel) NumCtx() uint32 { value, exists := llm.KV[fmt.Sprintf("%s.context_length", llm.ModelFamily())] if !exists { return 0 } return value.(uint32) } func (llm *GGUFModel) NumGQA() uint32 { numHeadKv := llm.NumHeadKv() if numHeadKv == 0 { return 0 } return llm.NumHead() / numHeadKv } func (llm GGUFModel) readU8(r io.Reader) uint8 { var u8 uint8 binary.Read(r, llm.ByteOrder, &u8) return u8 } func (llm GGUFModel) readI8(r io.Reader) int8 { var i8 int8 binary.Read(r, llm.ByteOrder, &i8) return i8 } func (llm GGUFModel) readU16(r io.Reader) uint16 { var u16 uint16 binary.Read(r, llm.ByteOrder, &u16) return u16 } func (llm GGUFModel) readI16(r io.Reader) int16 { var i16 int16 binary.Read(r, llm.ByteOrder, &i16) return i16 } func (llm GGUFModel) readU32(r io.Reader) uint32 { var u32 uint32 binary.Read(r, llm.ByteOrder, &u32) return u32 } func (llm GGUFModel) readI32(r io.Reader) int32 { var i32 int32 binary.Read(r, llm.ByteOrder, &i32) return i32 } func (llm GGUFModel) readU64(r io.Reader) uint64 { var u64 uint64 binary.Read(r, llm.ByteOrder, &u64) return u64 } func (llm GGUFModel) readI64(r io.Reader) int64 { var i64 int64 binary.Read(r, llm.ByteOrder, &i64) return i64 } func (llm GGUFModel) readF32(r io.Reader) float32 { var f32 float32 binary.Read(r, llm.ByteOrder, &f32) return f32 } func (llm GGUFModel) readF64(r io.Reader) float64 { var f64 float64 binary.Read(r, llm.ByteOrder, &f64) return f64 } func (llm GGUFModel) readBool(r io.Reader) bool { var b bool binary.Read(r, llm.ByteOrder, &b) return b } func (llm GGUFModel) readStringV1(r io.Reader) (string, error) { var nameLength uint32 binary.Read(r, llm.ByteOrder, &nameLength) var b bytes.Buffer if _, err := io.CopyN(&b, r, int64(nameLength)); err != nil { return "", err } // gguf v1 strings are null-terminated b.Truncate(b.Len() - 1) return b.String(), nil } func (llm GGUFModel) readString(r io.Reader) (string, error) { if llm.Version == 1 { return llm.readStringV1(r) } var nameLength uint64 binary.Read(r, llm.ByteOrder, &nameLength) var b bytes.Buffer if _, err := io.CopyN(&b, r, int64(nameLength)); err != nil { return "", err } return b.String(), nil } func (llm *GGUFModel) readArrayV1(r io.Reader) (arr []any, err error) { atype := llm.readU32(r) n := llm.readU32(r) for i := 0; uint32(i) < n; i++ { switch atype { case GGUFTypeUint8: arr = append(arr, llm.readU8(r)) case GGUFTypeInt8: arr = append(arr, llm.readI8(r)) case GGUFTypeUint16: arr = append(arr, llm.readU16(r)) case GGUFTypeInt16: arr = append(arr, llm.readI16(r)) case GGUFTypeUint32: arr = append(arr, llm.readU32(r)) case GGUFTypeInt32: arr = append(arr, llm.readI32(r)) case GGUFTypeFloat32: arr = append(arr, llm.readF32(r)) case GGUFTypeBool: arr = append(arr, llm.readBool(r)) case GGUFTypeString: s, err := llm.readStringV1(r) if err != nil { return nil, err } arr = append(arr, s) default: return nil, fmt.Errorf("invalid array type: %d", atype) } } return } func (llm *GGUFModel) readArray(r io.Reader) (arr []any, err error) { if llm.Version == 1 { return llm.readArrayV1(r) } atype := llm.readU32(r) n := llm.readU64(r) for i := 0; uint64(i) < n; i++ { switch atype { case GGUFTypeUint8: arr = append(arr, llm.readU8(r)) case GGUFTypeInt8: arr = append(arr, llm.readI8(r)) case GGUFTypeUint16: arr = append(arr, llm.readU16(r)) case GGUFTypeInt16: arr = append(arr, llm.readI16(r)) case GGUFTypeUint32: arr = append(arr, llm.readU32(r)) case GGUFTypeInt32: arr = append(arr, llm.readI32(r)) case GGUFTypeUint64: arr = append(arr, llm.readU64(r)) case GGUFTypeInt64: arr = append(arr, llm.readI64(r)) case GGUFTypeFloat32: arr = append(arr, llm.readF32(r)) case GGUFTypeFloat64: arr = append(arr, llm.readF64(r)) case GGUFTypeBool: arr = append(arr, llm.readBool(r)) case GGUFTypeString: s, err := llm.readString(r) if err != nil { return nil, err } arr = append(arr, s) default: return nil, fmt.Errorf("invalid array type: %d", atype) } } return }