package main import ( "context" "encoding/json" "errors" "flag" "fmt" "log" "log/slog" "net" "net/http" "os" "path/filepath" "regexp" "runtime" "strconv" "strings" "sync" "time" "unicode/utf8" "github.com/ollama/ollama/api" "github.com/ollama/ollama/llama" ) // input is an element of the prompt to process, either // a token or an image embedding (generated from a vision projector) type input struct { token int // embed is an image embedding embed []float32 } type Sequence struct { // batch index iBatch int // number of tokens predicted so far numPredicted int // prompt inputs left to evaluate inputs []input // tokens that have been generated but not returned yet (e.g. for stop sequences) pendingResponses []string // input cache being used by this sequence cache *InputCacheSlot // does this sequence require cross-attention layers to be processed? - if we have seen // an image for certain multi-modal models crossAttention bool // channel to send responses over responses chan string // channel to stop decoding (such as if the remote connection is closed) quit chan bool // number of tokens to predict numPredict int samplingCtx *llama.SamplingContext // channel to send back the embedding if embedding only embedding chan []float32 // stop sequences stop []string // number of inputs to keep at the beginning when shifting context window numKeep int // true if an embedding are to be returned instead of text generation embeddingOnly bool doneReason string // Metrics startProcessingTime time.Time startGenerationTime time.Time numDecoded int numPromptInputs int } type NewSequenceParams struct { numPredict int stop []string numKeep int samplingParams *llama.SamplingParams embedding bool } func (s *Server) NewSequence(prompt string, images []ImageData, params NewSequenceParams) (*Sequence, error) { s.ready.Wait() startTime := time.Now() inputs, err := s.inputs(prompt, images) if err != nil { return nil, fmt.Errorf("failed to process inputs: %w", err) } else if len(inputs) == 0 { return nil, errors.New("no input provided") } if params.numKeep < 0 { params.numKeep = len(inputs) } if s.model.AddBOSToken() { params.numKeep += 1 } // Ensure that at least 1 input can be discarded during shift params.numKeep = min(params.numKeep, s.cache.numCtx-1) if len(inputs) > s.cache.numCtx { slog.Warn("input exceeds context length", "prompt", len(inputs), "limit", s.cache.numCtx) } var sc *llama.SamplingContext if params.samplingParams != nil { sc, err = llama.NewSamplingContext(s.model, *params.samplingParams) if err != nil { return nil, err } for _, input := range inputs { if input.embed == nil { sc.Accept(input.token, false) } } } return &Sequence{ inputs: inputs, numPromptInputs: len(inputs), startProcessingTime: startTime, numPredict: params.numPredict, pendingResponses: make([]string, 0), responses: make(chan string, 100), quit: make(chan bool, 1), embedding: make(chan []float32, 1), samplingCtx: sc, embeddingOnly: params.embedding, stop: params.stop, numKeep: params.numKeep, }, nil } // inputs processes the prompt and images into a list of inputs // by splitting the prompt on [img-] tags, tokenizing text and // generating image embeddings for each image func (s *Server) inputs(prompt string, images []ImageData) ([]input, error) { var inputs []input re := regexp.MustCompile(`\[img-(\d+)\]`) parts := re.Split(prompt, -1) matches := re.FindAllStringSubmatch(prompt, -1) for i, part := range parts { // text - tokenize if strings.TrimSpace(part) != "" { tokens, err := s.lc.Model().Tokenize(part, i == 0, true) if err != nil { return nil, err } for _, t := range tokens { inputs = append(inputs, input{token: t}) } } // image - generate image embedding if i < len(matches) { n, _ := strconv.Atoi(matches[i][1]) imageIndex := -1 for j := range images { if images[j].ID == n { imageIndex = j break } } if imageIndex < 0 { return nil, fmt.Errorf("invalid image index: %d", n) } embed, err := s.image.NewEmbed(s.lc, images[imageIndex].Data, images[imageIndex].AspectRatioID) if err != nil { return nil, err } for _, e := range embed { inputs = append(inputs, input{embed: e}) } } } return inputs, nil } type Server struct { model *llama.Model lc *llama.Context // required for image embeddings image *ImageContext // TODO (jmorganca): make this n_batch batchSize int // parallel is the number of parallel requests to handle parallel int // seqs is the list of parallel sequences being evaluated // TODO (jmorganca): this can probably be moved into run() seqs []*Sequence // KV cache cache *InputCache // next sequence for prompt processing to avoid starvation nextSeq int // is the server ready to process requests? ready sync.WaitGroup mu sync.Mutex cond *sync.Cond progress float32 status ServerStatus } func (s *Server) allNil() bool { for _, item := range s.seqs { if item != nil { return false } } return true } func flushPending(seq *Sequence) bool { joined := strings.Join(seq.pendingResponses, "") seq.pendingResponses = []string{} // Check if there are any partial UTF-8 characters remaining. // We already check and queue as we are generating but some may // still make it here: // - Sequence is ending, e.g. generation limit has been hit // - Invalid characters in the middle of a string // This is a stricter check to ensure we never output invalid Unicode. for !utf8.ValidString(joined) { joined = joined[:len(joined)-1] } if len(joined) == 0 { return true } select { case seq.responses <- joined: return true case <-seq.quit: return false } } func (s *Server) removeSequence(seqIndex int, reason string) { seq := s.seqs[seqIndex] flushPending(seq) seq.doneReason = reason close(seq.responses) close(seq.embedding) seq.cache.InUse = false s.seqs[seqIndex] = nil } func (s *Server) run(ctx context.Context) { s.ready.Wait() // Logically these batches are used only within the context of processBatch // but it is better for performance to allocate them once here tokenBatch, err := llama.NewBatch(s.batchSize, len(s.seqs), 0) if err != nil { panic(err) } defer tokenBatch.Free() var embedBatch *llama.Batch embedBatchSize := s.image.BatchSize(s.batchSize) if embedBatchSize != 0 { embedBatch, err = llama.NewBatch(embedBatchSize, len(s.seqs), s.image.EmbedSize(s.lc)) if err != nil { panic(err) } defer embedBatch.Free() } else { embedBatch = &llama.Batch{} } for { select { case <-ctx.Done(): return default: s.processBatch(tokenBatch, embedBatch) tokenBatch.Clear() embedBatch.Clear() } } } // TODO (jmorganca): processBatch should be simplified, removing: // * sampling // * stop token checking // * metrics // these should instead be handled by the handlers // it should only be responsible for accepting tokens or embeddings and // processing batches as fast as possible func (s *Server) processBatch(tokenBatch *llama.Batch, embedBatch *llama.Batch) { s.mu.Lock() for s.allNil() { s.cond.Wait() // Wait until an item is added } defer s.mu.Unlock() var batch *llama.Batch crossAttention := false seqIdx := s.nextSeq - 1 for range s.seqs { seqIdx = (seqIdx + 1) % len(s.seqs) seq := s.seqs[seqIdx] if seq == nil { continue } // if past the num predict limit if seq.numPredict > 0 && seq.numPredicted >= seq.numPredict { s.removeSequence(seqIdx, "limit") continue } var numInputsProcessed int shifted := false for i, input := range seq.inputs { if len(seq.cache.Inputs)+1 > s.cache.numCtx { if !shifted { s.cache.ShiftCacheSlot(seq.cache, seq.numKeep) shifted = true } else { break } } embedding := input.embed != nil // If we don't currently have a batch, use one of the correct type and // fill it up as much as possible across all sequences. If we encounter an // input of the opppsite type, stop for that sequence but then pick up from // there for the next batch, ensuring that we alternate types if batch == nil { if !embedding { batch = tokenBatch } else { batch = embedBatch seq.crossAttention = s.image.NeedCrossAttention(input) } } else if embedding != batch.IsEmbedding() || crossAttention != seq.crossAttention { s.nextSeq = seqIdx break } if i >= batch.Size() { break } crossAttention = seq.crossAttention batch.Add(input.token, input.embed, len(seq.cache.Inputs), i+1 == len(seq.inputs), seq.cache.Id) seq.cache.Inputs = append(seq.cache.Inputs, input) numInputsProcessed++ } if numInputsProcessed > 0 { seq.inputs = seq.inputs[numInputsProcessed:] seq.iBatch = batch.NumTokens() - 1 } } if batch == nil || batch.NumTokens() == 0 { return } s.lc.SetCrossAttention(crossAttention) err := s.lc.Decode(batch) if err != nil { slog.Error("failed to decode batch", "error", err) return } if crossAttention { // synchronize state to ensure the cross attention batch is complete. // needed specifically for multi-GPU systems otherwise an inflight // task may be incorrectly invalidated causing a crash s.lc.Synchronize() } for i, seq := range s.seqs { if seq == nil { continue } // don't sample prompt processing if len(seq.inputs) != 0 { continue } seq.numDecoded += 1 if seq.numDecoded == 1 { seq.startGenerationTime = time.Now() } // if done processing the prompt, generate an embedding and return if seq.embeddingOnly { embed := s.lc.GetEmbeddingsSeq(i) if embed == nil { embed = s.lc.GetEmbeddingsIth(seq.iBatch) } seq.embedding <- embed s.removeSequence(i, "") continue } // sample a token token := seq.samplingCtx.Sample(s.lc, seq.iBatch) seq.samplingCtx.Accept(token, true) piece := s.model.TokenToPiece(token) seq.numPredicted++ // if it's an end of sequence token, break if s.model.TokenIsEog(token) { // TODO (jmorganca): we should send this back // as it's important for the /api/generate context // seq.responses <- piece s.removeSequence(i, "stop") continue } seq.inputs = []input{{token: token}} seq.pendingResponses = append(seq.pendingResponses, piece) sequence := strings.Join(seq.pendingResponses, "") if ok, stop := findStop(sequence, seq.stop); ok { slog.Debug("hit stop token", "pending", seq.pendingResponses, "stop", stop) var tokenTruncated bool origLen := len(seq.pendingResponses) seq.pendingResponses, tokenTruncated = truncateStop(seq.pendingResponses, stop) newLen := len(seq.pendingResponses) // Update the cache based on the tokens that will be returned: // - We have 1 token more than is currently in the cache because // the last one generated wasn't submitted to Decode // - Remove any stop sequences that we stripped out // - If truncateStop removed a portion of a token, drop that // - As defense-in-depth, if truncatedToken didn't find a stop token // remove the extra one that we added to the cache len tokenLen := len(seq.cache.Inputs) + 1 tokenLen -= origLen - newLen if tokenTruncated || origLen == newLen { tokenLen-- } seq.cache.Inputs = seq.cache.Inputs[:tokenLen] s.removeSequence(i, "stop") continue } if containsStopSuffix(sequence, seq.stop) { continue } if incompleteUnicode(sequence) { continue } if !flushPending(seq) { s.removeSequence(i, "connection") } } } // TODO (jmorganca): use structs from the api package to avoid duplication // this way the api acts as a proxy instead of using a different api for the // runner type Options struct { api.Runner NumKeep int `json:"n_keep"` Seed int `json:"seed"` NumPredict int `json:"n_predict"` TopK int `json:"top_k"` TopP float32 `json:"top_p"` MinP float32 `json:"min_p"` TFSZ float32 `json:"tfs_z"` TypicalP float32 `json:"typical_p"` RepeatLastN int `json:"repeat_last_n"` Temperature float32 `json:"temperature"` RepeatPenalty float32 `json:"repeat_penalty"` PresencePenalty float32 `json:"presence_penalty"` FrequencyPenalty float32 `json:"frequency_penalty"` Mirostat int `json:"mirostat"` MirostatTau float32 `json:"mirostat_tau"` MirostatEta float32 `json:"mirostat_eta"` PenalizeNewline bool `json:"penalize_nl"` Stop []string `json:"stop"` } type ImageData struct { Data []byte `json:"data"` ID int `json:"id"` AspectRatioID int `json:"aspect_ratio_id"` } type CompletionRequest struct { Prompt string `json:"prompt"` Images []ImageData `json:"image_data"` Grammar string `json:"grammar"` CachePrompt bool `json:"cache_prompt"` Options } type Timings struct { PredictedN int `json:"predicted_n"` PredictedMS float64 `json:"predicted_ms"` PromptN int `json:"prompt_n"` PromptMS float64 `json:"prompt_ms"` } type CompletionResponse struct { Content string `json:"content"` Stop bool `json:"stop"` Model string `json:"model,omitempty"` Prompt string `json:"prompt,omitempty"` StoppedLimit bool `json:"stopped_limit,omitempty"` PredictedN int `json:"predicted_n,omitempty"` PredictedMS float64 `json:"predicted_ms,omitempty"` PromptN int `json:"prompt_n,omitempty"` PromptMS float64 `json:"prompt_ms,omitempty"` Timings Timings `json:"timings"` } func (s *Server) completion(w http.ResponseWriter, r *http.Request) { var req CompletionRequest req.Options = Options(api.DefaultOptions()) if err := json.NewDecoder(r.Body).Decode(&req); err != nil { http.Error(w, "Bad request", http.StatusBadRequest) return } // Set the headers to indicate streaming w.Header().Set("Content-Type", "application/json") w.Header().Set("Transfer-Encoding", "chunked") flusher, ok := w.(http.Flusher) if !ok { http.Error(w, "Streaming not supported", http.StatusInternalServerError) return } var samplingParams llama.SamplingParams samplingParams.TopK = req.TopK samplingParams.TopP = req.TopP samplingParams.MinP = req.MinP samplingParams.TfsZ = req.TFSZ samplingParams.TypicalP = req.TypicalP samplingParams.Temp = req.Temperature samplingParams.RepeatLastN = req.RepeatLastN samplingParams.PenaltyRepeat = req.RepeatPenalty samplingParams.PenaltyFreq = req.FrequencyPenalty samplingParams.PenaltyPresent = req.PresencePenalty samplingParams.Mirostat = req.Mirostat samplingParams.MirostatTau = req.MirostatTau samplingParams.MirostatEta = req.MirostatEta samplingParams.PenalizeNl = req.PenalizeNewline samplingParams.Seed = uint32(req.Seed) samplingParams.Grammar = req.Grammar seq, err := s.NewSequence(req.Prompt, req.Images, NewSequenceParams{ numPredict: req.NumPredict, stop: req.Stop, numKeep: req.NumKeep, samplingParams: &samplingParams, embedding: false, }) if err != nil { http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError) return } // TODO (jmorganca): add to sequence queue instead of // failing if a slot isn't available s.mu.Lock() for i, sq := range s.seqs { if sq == nil { seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt) if err != nil { s.mu.Unlock() http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError) return } seq.crossAttention = s.image.NeedCrossAttention(seq.cache.Inputs...) s.seqs[i] = seq s.cond.Signal() break } } s.mu.Unlock() for { select { case <-r.Context().Done(): close(seq.quit) return case content, ok := <-seq.responses: if ok { if err := json.NewEncoder(w).Encode(&CompletionResponse{ Content: content, }); err != nil { http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError) close(seq.quit) return } flusher.Flush() } else { // Send the final response if err := json.NewEncoder(w).Encode(&CompletionResponse{ Stop: true, StoppedLimit: seq.doneReason == "limit", Timings: Timings{ PromptN: seq.numPromptInputs, PromptMS: float64(seq.startGenerationTime.Sub(seq.startProcessingTime).Milliseconds()), PredictedN: seq.numDecoded, PredictedMS: float64(time.Since(seq.startGenerationTime).Milliseconds()), }, }); err != nil { http.Error(w, fmt.Sprintf("failed to encode final response: %v", err), http.StatusInternalServerError) } return } } } } type EmbeddingRequest struct { Content string `json:"content"` CachePrompt bool `json:"cache_prompt"` } type EmbeddingResponse struct { Embedding []float32 `json:"embedding"` } func (s *Server) embeddings(w http.ResponseWriter, r *http.Request) { var req EmbeddingRequest if err := json.NewDecoder(r.Body).Decode(&req); err != nil { http.Error(w, fmt.Sprintf("bad request: %s", err), http.StatusBadRequest) return } w.Header().Set("Content-Type", "application/json") slog.Debug("embedding request", "content", req.Content) seq, err := s.NewSequence(req.Content, nil, NewSequenceParams{embedding: true}) if err != nil { http.Error(w, fmt.Sprintf("Failed to create new sequence: %v", err), http.StatusInternalServerError) return } // TODO (jessegross): Wait for a free slot instead of failing and blocking forever s.mu.Lock() for i, sq := range s.seqs { if sq == nil { seq.cache, seq.inputs, err = s.cache.LoadCacheSlot(seq.inputs, req.CachePrompt) if err != nil { s.mu.Unlock() http.Error(w, fmt.Sprintf("Failed to load cache: %v", err), http.StatusInternalServerError) return } s.seqs[i] = seq s.cond.Signal() break } } s.mu.Unlock() embedding := <-seq.embedding if err := json.NewEncoder(w).Encode(&EmbeddingResponse{ Embedding: embedding, }); err != nil { http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError) } } type HealthResponse struct { Status string `json:"status"` Progress float32 `json:"progress"` } type ServerStatus int const ( ServerStatusReady ServerStatus = iota ServerStatusLoadingModel ServerStatusError ) func (s ServerStatus) ToString() string { switch s { case ServerStatusReady: return "ok" case ServerStatusLoadingModel: return "loading model" default: return "server error" } } func (s *Server) health(w http.ResponseWriter, r *http.Request) { w.Header().Set("Content-Type", "application/json") if err := json.NewEncoder(w).Encode(&HealthResponse{ Status: s.status.ToString(), Progress: s.progress, }); err != nil { http.Error(w, fmt.Sprintf("failed to encode response: %v", err), http.StatusInternalServerError) } } func (s *Server) loadModel( params llama.ModelParams, mpath string, lpath string, ppath string, kvSize int, flashAttention bool, threads int, multiUserCache bool, ) { llama.BackendInit() var err error s.model, err = llama.LoadModelFromFile(mpath, params) if err != nil { panic(err) } ctxParams := llama.NewContextParams(kvSize, s.batchSize*s.parallel, s.parallel, threads, flashAttention) s.lc, err = llama.NewContextWithModel(s.model, ctxParams) if err != nil { panic(err) } if lpath != "" { err := s.model.ApplyLoraFromFile(s.lc, lpath, 1.0, threads) if err != nil { panic(err) } } if ppath != "" { var err error s.image, err = NewImageContext(s.lc, ppath) if err != nil { panic(err) } } s.cache, err = NewInputCache(s.lc, kvSize, s.parallel, multiUserCache) if err != nil { panic(err) } s.status = ServerStatusReady s.ready.Done() } func main() { mpath := flag.String("model", "", "Path to model binary file") ppath := flag.String("mmproj", "", "Path to projector binary file") parallel := flag.Int("parallel", 1, "Number of sequences to handle simultaneously") batchSize := flag.Int("batch-size", 512, "Batch size") nGpuLayers := flag.Int("n-gpu-layers", 0, "Number of layers to offload to GPU") mainGpu := flag.Int("main-gpu", 0, "Main GPU") flashAttention := flag.Bool("flash-attn", false, "Enable flash attention") kvSize := flag.Int("ctx-size", 2048, "Context (or KV cache) size") lpath := flag.String("lora", "", "Path to lora layer file") port := flag.Int("port", 8080, "Port to expose the server on") threads := flag.Int("threads", runtime.NumCPU(), "Number of threads to use during generation") verbose := flag.Bool("verbose", false, "verbose output (default: disabled)") noMmap := flag.Bool("no-mmap", false, "do not memory-map model (slower load but may reduce pageouts if not using mlock)") mlock := flag.Bool("mlock", false, "force system to keep model in RAM rather than swapping or compressing") tensorSplit := flag.String("tensor-split", "", "fraction of the model to offload to each GPU, comma-separated list of proportions") multiUserCache := flag.Bool("multiuser-cache", false, "optimize input cache algorithm for multiple users") requirements := flag.Bool("requirements", false, "print json requirement information") flag.Parse() if *requirements { printRequirements(os.Stdout) return } level := slog.LevelInfo if *verbose { level = slog.LevelDebug } handler := slog.NewTextHandler(os.Stderr, &slog.HandlerOptions{ Level: level, AddSource: true, ReplaceAttr: func(_ []string, attr slog.Attr) slog.Attr { if attr.Key == slog.SourceKey { source := attr.Value.Any().(*slog.Source) source.File = filepath.Base(source.File) } return attr }, }) slog.SetDefault(slog.New(handler)) slog.Info("starting go runner") slog.Info("system", "info", llama.PrintSystemInfo(), "threads", *threads) server := &Server{ batchSize: *batchSize, parallel: *parallel, seqs: make([]*Sequence, *parallel), status: ServerStatusLoadingModel, } var tensorSplitFloats []float32 if *tensorSplit != "" { stringFloats := regexp.MustCompile(",").Split(*tensorSplit, -1) tensorSplitFloats = make([]float32, 0, len(stringFloats)) for _, s := range stringFloats { f, _ := strconv.ParseFloat(s, 32) tensorSplitFloats = append(tensorSplitFloats, float32(f)) } } params := llama.ModelParams{ NumGpuLayers: *nGpuLayers, MainGpu: *mainGpu, UseMmap: !*noMmap && *lpath == "", UseMlock: *mlock, TensorSplit: tensorSplitFloats, Progress: func(progress float32) { server.progress = progress }, } server.ready.Add(1) go server.loadModel(params, *mpath, *lpath, *ppath, *kvSize, *flashAttention, *threads, *multiUserCache) server.cond = sync.NewCond(&server.mu) ctx, cancel := context.WithCancel(context.Background()) go server.run(ctx) addr := "127.0.0.1:" + strconv.Itoa(*port) listener, err := net.Listen("tcp", addr) if err != nil { fmt.Println("Listen error:", err) return } defer listener.Close() mux := http.NewServeMux() mux.HandleFunc("/embedding", server.embeddings) mux.HandleFunc("/completion", server.completion) mux.HandleFunc("/health", server.health) httpServer := http.Server{ Handler: mux, } log.Println("Server listening on", addr) if err := httpServer.Serve(listener); err != nil { log.Fatal("server error:", err) } cancel() }