package convert import ( "github.com/ollama/ollama/llm" ) type gemma2Model struct { gemmaModel SlidingWindow uint32 `json:"sliding_window"` AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"` FinalLogitSoftcap float32 `json:"final_logit_softcapping"` } func (p *gemma2Model) KV(t *Tokenizer) llm.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "gemma2" kv["gemma2.context_length"] = p.MaxPositionEmbeddings kv["gemma2.embedding_length"] = p.HiddenSize kv["gemma2.block_count"] = p.HiddenLayers kv["gemma2.feed_forward_length"] = p.IntermediateSize kv["gemma2.attention.head_count"] = p.NumAttentionHeads kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS kv["gemma2.attention.key_length"] = p.HeadDim kv["gemma2.attention.value_length"] = p.HeadDim kv["gemma2.attention.sliding_window"] = p.SlidingWindow kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap kv["tokenizer.ggml.eot_token_id"] = uint32(107) kv["tokenizer.ggml.middle_token_id"] = uint32(68) kv["tokenizer.ggml.prefix_token_id"] = uint32(67) kv["tokenizer.ggml.suffix_token_id"] = uint32(69) return kv } func (p *gemma2Model) Replacements() []string { return []string{ "model.embed_tokens", "token_embd", "model.norm", "output_norm", "model.layers", "blk", "input_layernorm", "attn_norm", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.gate_proj", "ffn_gate", "mlp.down_proj", "ffn_down", "mlp.up_proj", "ffn_up", "post_attention_layernorm", "post_attention_norm", "pre_feedforward_layernorm", "ffn_norm", "post_feedforward_layernorm", "post_ffw_norm", } }