// Copyright 2016 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.!

syntax = "proto2";

// TODO(taku): Needs to use LITE RUNTIME in OSS release.
option optimize_for = LITE_RUNTIME;
option go_package = "./sentencepiece";

package sentencepiece;

// TrainerSpec encodes a various parameters for SentencePiece training.
// Next id: 55
message TrainerSpec {
  ///////////////////////////////////////////////////////////////////
  // General parameters
  //
  // Input corpus files.
  //  Trainer accepts the following two formats:
  //  A) Monolingual: plain text, one sentence per line.
  //  B) Bilingual:   TSV, source sentence <tab> target sentence
  //  When bilingual data is passed, shared vocabulary model is built.
  //  Note that the input file must be raw corpus, not a preprocessed corpus.
  //  Trainer only loads the first `input_sentence_size` sentences specified
  //  with this parameter.
  repeated string input = 1;

  // Input corpus format:
  // "text": one-sentence-per-line text format (default)
  // "tsv":  sentence <tab> freq
  optional string input_format = 7;

  // Output model file prefix.
  // <model_prefix>.model and <model_prefix>.vocab are generated.
  optional string model_prefix = 2;

  // Model type. only have UNIGRAM now.
  enum ModelType {
    UNIGRAM = 1;  // Unigram language model with dynamic algorithm
    BPE = 2;      // Byte Pair Encoding
    WORD = 3;     // Delimitered by whitespace.
    CHAR = 4;     // tokenizes into character sequence
  }
  optional ModelType model_type = 3 [default = UNIGRAM];

  // Vocabulary size. 8k is the default size.
  optional int32 vocab_size = 4 [default = 8000];

  // List of the languages this model can accept.
  // Since the model is language-agnostic, this field is used as a reference.
  repeated string accept_language = 5;

  // Size of self-test samples, which are encoded in the model file.
  optional int32 self_test_sample_size = 6 [default = 0];

  // Whether to use DP version of sentencepiece. Use it with TSV input format
  // (requires precomputed word tab counts to work).
  optional bool enable_differential_privacy = 50 [default = false];
  // Set these parameters if you need DP version of sentencepiece.
  // std of noise to add.
  optional float differential_privacy_noise_level = 51 [default = 0.0];
  // Clipping threshold to apply after adding noise. All the words with
  // frequency less than this value are dropped.
  optional uint64 differential_privacy_clipping_threshold = 52 [default = 0];

  ///////////////////////////////////////////////////////////////////
  // Training parameters.
  //
  // Uses characters which cover the corpus with the ratio of `chars_coverage`.
  // This parameter determines the set of basic Alphabet of sentence piece.
  // 1.0 - `chars_coverage` characters are treated as UNK.
  // See also required_chars field.
  optional float character_coverage = 10 [default = 0.9995];

  // Maximum size of sentences the trainer loads from `input` parameter.
  // Trainer simply loads the `input` files in sequence.
  // It is better to shuffle the input corpus randomly.
  optional uint64 input_sentence_size = 11 [default = 0];
  optional bool shuffle_input_sentence = 19 [default = true];

  // Maximum size of sentences to make seed sentence pieces.
  // Extended suffix array is constructed to extract frequent
  // sub-strings from the corpus. This uses 20N working space,
  // where N is the size of corpus.
  optional int32 mining_sentence_size = 12 [deprecated = true];

  // Maximum size of sentences to train sentence pieces.
  optional int32 training_sentence_size = 13 [deprecated = true];

  // The size of seed sentencepieces.
  // `seed_sentencepiece_size` must be larger than `vocab_size`.
  optional int32 seed_sentencepiece_size = 14 [default = 1000000];

  // In every EM sub-iterations, keeps top
  // `shrinking_factor` * `current sentencepieces size` with respect to
  // the loss of the sentence piece. This value should be smaller than 1.0.
  optional float shrinking_factor = 15 [default = 0.75];

  // The maximum sentence length in byte. The sentences with the length
  // larger than `max_sentence_length` is simply ignored.
  // Longer input tends to bring the following risks:
  //  * Overflow during EM training (unigram language model only)
  //  * Performance drop because of O(n log n) cost in BPE.
  optional int32 max_sentence_length = 18 [default = 4192];

  // Number of threads in the training.
  optional int32 num_threads = 16 [default = 16];

  // Number of EM sub iterations.
  optional int32 num_sub_iterations = 17 [default = 2];

  ///////////////////////////////////////////////////////////////////
  // SentencePiece parameters which control the shapes of sentence piece.
  //
  // Maximum length of sentencepiece.
  optional int32 max_sentencepiece_length = 20 [default = 16];

  // Uses Unicode script to split sentence pieces.
  // When `split_by_unicode_script` is true, we do not allow sentence piece to
  // include multiple Unicode scripts, e.g. "F1" is not a valid piece.
  // Exception: CJ characters (Hiragana/Katakana/Han) are all handled
  // as one script type, since Japanese word can consist of multiple scripts.
  // This exception is always applied regardless of the accept-language
  // parameter.
  optional bool split_by_unicode_script = 21 [default = true];

  // When `split_by_number` is true, put a boundary between number and
  // non-number transition. If we want to treat "F1" is one token, set this flag
  // to be false.
  optional bool split_by_number = 23 [default = true];

  // Use a white space to split sentence pieces.
  // When `split_by_whitespace` is false, we may have the piece containing
  // a white space in the middle. e.g., "in_the".
  optional bool split_by_whitespace = 22 [default = true];

  // Adds whitespace symbol (_) as a suffix instead of prefix. e.g., _hello =>
  // hello_. When `treat_whitespace_as_suffix` is true,
  // NormalizerSpec::add_dummy_prefix will add the dummy whitespace to the end
  // of sentence.
  optional bool treat_whitespace_as_suffix = 24 [default = false];

  // Allows pieces that only contain whitespaces instead of appearing only as
  // prefix or suffix of other pieces.
  optional bool allow_whitespace_only_pieces = 26 [default = false];

  // Split all digits (0-9) into separate pieces.
  optional bool split_digits = 25 [default = false];

  // Defines the pre-tokenization delimiter.
  // When specified, no pieces crossing this delimiter is not included
  // in the vocab. Then the delimiter string is virtually ignored
  // during the training. This field can allows constraints on the vocabulary
  // selection. Note that this field is available on unigram mode.
  optional string pretokenization_delimiter = 53 [ default = ""];

  ///////////////////////////////////////////////////////////////////
  // Vocabulary management
  //
  // Defines control symbols used as an indicator to
  // change the behavior of the decoder. <s> and </s> are pre-defined.
  // We can use this field to encode various meta information,
  // including language indicator in multilingual model.
  // These symbols are not visible to users, but visible to
  // the decoder. Note that when the input sentence contains control symbols,
  // they are not treated as one token, but segmented into normal pieces.
  // Control symbols must be inserted independently from the segmentation.
  repeated string control_symbols = 30;

  // Defines user defined symbols.
  // These symbols are added with extremely high score
  // so they are always treated as one unique symbol in any context.
  // Typical usage of user_defined_symbols is placeholder for named entities.
  repeated string user_defined_symbols = 31;

  // Defines required characters. Each UTF8 character in this string is included
  // in the character set regardless of character_coverage value. Unlike
  // user_defined_symbols, these characters have scores based on the frequency
  // on input sentences, and the model can form subwords using characters
  // in this field.
  optional string required_chars = 36;

  // Decomposes unknown pieces into UTF-8 bytes.
  optional bool byte_fallback = 35 [default = false];

  // When creating the vocabulary file, defines whether or not to additionally
  // output the score for each piece.
  optional bool vocabulary_output_piece_score = 32 [default = true];

  // `vocab_size` is treated as hard limit. Crash if
  // the model can not produce the vocab of size `vocab_size`,
  // When `hard_vocab_limit` is false, vocab_size is treated
  // as soft limit. Note that when model_type=char,
  // always assumes hard_vocab_limit = false.
  optional bool hard_vocab_limit = 33 [default = true];

  // use all symbols for vocab extraction. This flag is valid
  // if model type is either CHAR or WORD
  optional bool use_all_vocab = 34 [default = false];

  ///////////////////////////////////////////////////////////////////
  // Reserved special meta tokens.
  // * -1 is not used.
  // * unk_id must not be -1.
  // Id must starts with 0 and be contigous.
  optional int32 unk_id = 40 [default = 0];   // <unk>
  optional int32 bos_id = 41 [default = 1];   // <s>
  optional int32 eos_id = 42 [default = 2];   // </s>
  optional int32 pad_id = 43 [default = -1];  // <pad> (padding)
  optional string unk_piece = 45 [default = "<unk>"];
  optional string bos_piece = 46 [default = "<s>"];
  optional string eos_piece = 47 [default = "</s>"];
  optional string pad_piece = 48 [default = "<pad>"];

  // Encodes <unk> into U+2047 (DOUBLE QUESTION MARK),
  // since this character can be useful both for user and
  // developer. We can easily figure out that <unk> is emitted.
  optional string unk_surface = 44 [default = " \xE2\x81\x87 "];

  // Increase bit depth to allow unigram model training on large
  // (>10M sentences) corpora. A Side-effect of enabling this flag
  // is increased memory usage.
  optional bool train_extremely_large_corpus = 49 [default = false];

 // Path to a seed sentencepieces file, with one tab-separated
  // seed sentencepiece <tab> frequency per line.
  optional string seed_sentencepieces_file = 54 [default = ""];

  // Customized extensions: the range of field numbers
  // are open to third-party extensions.
  extensions 200 to max;
}

// NormalizerSpec encodes a various parameters for string normalizaiton
message NormalizerSpec {
  // name of normalization rule.
  optional string name = 1;

  // Pre-compiled normalization rule created by
  // Builder::GetPrecompiledCharsMap() or Builder::CompileCharsMap() method.
  // Usually this field is set by Builder::GetNormalizerSpec() method.
  optional bytes precompiled_charsmap = 2;

  // Adds dummy whitespace at the beginning of text in order to
  // treat "world" in "world" and "hello world" in the same way.
  optional bool add_dummy_prefix = 3 [default = true];

  // Removes leading, trailing, and duplicate internal whitespace.
  optional bool remove_extra_whitespaces = 4 [default = true];

  // Replaces whitespace with meta symbol.
  // This field must be true to train sentence piece model.
  optional bool escape_whitespaces = 5 [default = true];

  // Custom normalization rule file in TSV format.
  // https://github.com/google/sentencepiece/blob/master/doc/normalization.md
  // This field is only used in SentencePieceTrainer::Train() method, which
  // compiles the rule into the binary rule stored in `precompiled_charsmap`.
  optional string normalization_rule_tsv = 6;

  // Customized extensions: the range of field numbers
  // are open to third-party extensions.
  extensions 200 to max;
}

// Proto to store samples for self-testing.
message SelfTestData {
  message Sample {
    optional string input = 1;
    optional string expected = 2;
  }
  repeated Sample samples = 1;

  // Customized extensions: the range of field numbers
  // are open to third-party extensions.
  extensions 200 to max;
}

// ModelProto stores model parameters.
// SentencePieceProcessor is supposed to be self-contained.
// All settings/parameters which may change the behavior must be encoded
// in ModelProto.
message ModelProto {
  message SentencePiece {
    enum Type {
      NORMAL = 1;        // normal symbol
      UNKNOWN = 2;       // unknown symbol. only <unk> for now.
      CONTROL = 3;       // control symbols. </s>, <s>, <2ja> etc.
      USER_DEFINED = 4;  // user defined symbols.
                         // Typical usage of USER_DEFINED symbol
                         // is placeholder.
      BYTE = 6;          // byte symbols. Used when `byte_fallback` is true.
      UNUSED = 5;        // this piece is not used.
    }
    optional string piece = 1;  // piece must not be empty.
    optional float score = 2;
    optional Type type = 3 [default = NORMAL];

    // Customized extensions: the range of field numbers
    // are open to third-party extensions.
    extensions 200 to max;
  }

  // Sentence pieces with scores.
  repeated SentencePiece pieces = 1;

  // Spec used to generate this model file.
  optional TrainerSpec trainer_spec = 2;

  // Spec for text normalization.
  optional NormalizerSpec normalizer_spec = 3;

  // Stores sample input and its expected segmentation to verify the model.
  optional SelfTestData self_test_data = 4;

  // Spec for text de-normalization.
  optional NormalizerSpec denormalizer_spec = 5;

  // Customized extensions: the range of field numbers
  // are open to third-party extensions.
  extensions 200 to max;
}