package server import ( "archive/zip" "bytes" "context" "encoding/json" "errors" "fmt" "io" "log/slog" "net/http" "os" "path/filepath" "slices" "strings" "text/template/parse" "github.com/google/uuid" "github.com/ollama/ollama/api" "github.com/ollama/ollama/convert" "github.com/ollama/ollama/llm" "github.com/ollama/ollama/template" "github.com/ollama/ollama/types/model" ) var intermediateBlobs map[string]string = make(map[string]string) type layerGGML struct { *Layer *llm.GGML } func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { m, err := ParseNamedManifest(name) switch { case errors.Is(err, os.ErrNotExist): if err := PullModel(ctx, name.String(), ®istryOptions{}, fn); err != nil { return nil, err } m, err = ParseNamedManifest(name) if err != nil { return nil, err } case err != nil: return nil, err } for _, layer := range m.Layers { layer, err := NewLayerFromLayer(layer.Digest, layer.MediaType, name.DisplayShortest()) if err != nil { return nil, err } switch layer.MediaType { case "application/vnd.ollama.image.model", "application/vnd.ollama.image.projector", "application/vnd.ollama.image.adapter": blobpath, err := GetBlobsPath(layer.Digest) if err != nil { return nil, err } blob, err := os.Open(blobpath) if err != nil { return nil, err } defer blob.Close() ggml, _, err := llm.DecodeGGML(blob, 0) if err != nil { return nil, err } layers = append(layers, &layerGGML{layer, ggml}) default: layers = append(layers, &layerGGML{layer, nil}) } } return layers, nil } func extractFromZipFile(p string, file *os.File, fn func(api.ProgressResponse)) error { stat, err := file.Stat() if err != nil { return err } r, err := zip.NewReader(file, stat.Size()) if err != nil { return err } fn(api.ProgressResponse{Status: "unpacking model metadata"}) for _, f := range r.File { if !filepath.IsLocal(f.Name) { return fmt.Errorf("%w: %s", zip.ErrInsecurePath, f.Name) } n := filepath.Join(p, f.Name) if err := os.MkdirAll(filepath.Dir(n), 0o750); err != nil { return err } // TODO(mxyng): this should not write out all files to disk outfile, err := os.Create(n) if err != nil { return err } defer outfile.Close() infile, err := f.Open() if err != nil { return err } defer infile.Close() if _, err = io.Copy(outfile, infile); err != nil { return err } if err := outfile.Close(); err != nil { return err } if err := infile.Close(); err != nil { return err } } return nil } func parseFromZipFile(_ context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { tempDir, err := os.MkdirTemp(filepath.Dir(file.Name()), "") if err != nil { return nil, err } defer os.RemoveAll(tempDir) if err := extractFromZipFile(tempDir, file, fn); err != nil { return nil, err } mf, err := convert.GetModelFormat(tempDir) if err != nil { return nil, err } params, err := mf.GetParams(tempDir) if err != nil { return nil, err } mArch, err := mf.GetModelArch("", tempDir, params) if err != nil { return nil, err } fn(api.ProgressResponse{Status: "processing tensors"}) if err := mArch.GetTensors(); err != nil { return nil, err } if err := mArch.LoadVocab(); err != nil { return nil, err } fn(api.ProgressResponse{Status: "converting model"}) // TODO(mxyng): this should write directly into a layer // e.g. NewLayer(arch.Reader(), "application/vnd.ollama.image.model") temp, err := os.CreateTemp(tempDir, "fp16") if err != nil { return nil, err } defer temp.Close() defer os.Remove(temp.Name()) if err = mArch.WriteGGUF(temp); err != nil { return nil, err } if _, err := temp.Seek(0, io.SeekStart); err != nil { return nil, err } layer, err := NewLayer(temp, "application/vnd.ollama.image.model") if err != nil { return nil, err } bin, err := layer.Open() if err != nil { return nil, err } defer bin.Close() ggml, _, err := llm.DecodeGGML(bin, 0) if err != nil { return nil, err } layers = append(layers, &layerGGML{layer, ggml}) intermediateBlobs[digest] = layer.Digest return detectChatTemplate(layers) } func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) { sr := io.NewSectionReader(file, 0, 512) contentType, err := detectContentType(sr) if err != nil { return nil, err } switch contentType { case "gguf", "ggla": // noop case "application/zip": return parseFromZipFile(ctx, file, digest, fn) default: return nil, fmt.Errorf("unsupported content type: %s", contentType) } stat, err := file.Stat() if err != nil { return nil, err } var offset int64 for offset < stat.Size() { ggml, n, err := llm.DecodeGGML(file, 0) if errors.Is(err, io.EOF) { break } else if err != nil { return nil, err } mediatype := "application/vnd.ollama.image.model" if ggml.Name() == "ggla" { mediatype = "application/vnd.ollama.image.adapter" } else if ggml.KV().Architecture() == "clip" { mediatype = "application/vnd.ollama.image.projector" } layer, err := NewLayer(io.NewSectionReader(file, offset, n), mediatype) if err != nil { return nil, err } layers = append(layers, &layerGGML{layer, ggml}) offset = n } return detectChatTemplate(layers) } func detectChatTemplate(layers []*layerGGML) ([]*layerGGML, error) { for _, layer := range layers { if s := layer.GGML.KV().ChatTemplate(); s != "" { if t, err := template.Named(s); err != nil { slog.Debug("template detection", "error", err) } else { tmpl, err := NewLayer(t.Reader(), "application/vnd.ollama.image.template") if err != nil { return nil, err } tmpl.status = fmt.Sprintf("using autodetected template %s", t.Name) layers = append(layers, &layerGGML{tmpl, nil}) } } } return layers, nil } func detectContentType(r io.Reader) (string, error) { var b bytes.Buffer if _, err := io.Copy(&b, r); err != nil { return "", err } if contentType := llm.DetectGGMLType(b.Bytes()); contentType != "" { return contentType, nil } if contentType := http.DetectContentType(b.Bytes()); contentType != "application/octet-stream" { return contentType, nil } return "unknown", nil } // parseToolCalls attempts to parse a JSON string into a slice of ToolCalls. // mxyng: this only really works if the input contains tool calls in some JSON format func (m *Model) parseToolCalls(s string) ([]api.ToolCall, bool) { // create a subtree from the node that ranges over .ToolCalls tmpl := m.Template.Subtree(func(n parse.Node) bool { if t, ok := n.(*parse.RangeNode); ok { return slices.Contains(template.Identifiers(t.Pipe), "ToolCalls") } return false }) if tmpl == nil { return nil, false } var b bytes.Buffer if err := tmpl.Execute(&b, map[string][]map[string]any{ "ToolCalls": { { "Function": map[string]any{ "Name": "@@name@@", "Arguments": "@@arguments@@", }, }, }, }); err != nil { return nil, false } var kv map[string]string // execute the subtree with placeholders to identify the keys if err := json.Unmarshal(b.Bytes(), &kv); err != nil { return nil, false } // find the keys that correspond to the name and arguments fields var name, arguments string for k, v := range kv { switch v { case "@@name@@": name = k case "@@arguments@@": arguments = k } } var sm []map[string]any decoder := json.NewDecoder(strings.NewReader(s)) for { // incrementally decode the JSON into a list of JSON objects // skipping over any invalid tokens if err := decoder.Decode(&sm); err != nil { if errors.Is(err, io.EOF) { break } if errors.As(err, new(*json.SyntaxError)) { r := decoder.Buffered() if _, err := r.Read(make([]byte, decoder.InputOffset()+1)); err != nil { break } decoder = json.NewDecoder(r) continue } return nil, false } // break as soon as a valid object is decoded break } var toolCalls []api.ToolCall for _, kv := range sm { call := api.ToolCall{ ID: uuid.New().String(), Type: "function", } for k, v := range kv { switch k { case name: call.Function.Name = v.(string) case arguments: call.Function.Arguments = v.(map[string]any) } } toolCalls = append(toolCalls, call) } if len(toolCalls) > 0 { return toolCalls, true } return nil, false }