package convert import ( "bytes" "crypto/sha256" "encoding/binary" "encoding/hex" "encoding/json" "flag" "fmt" "io" "io/fs" "log/slog" "math" "os" "path/filepath" "slices" "testing" "golang.org/x/exp/maps" "github.com/ollama/ollama/llm" ) func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) { t.Helper() f, err := os.CreateTemp(t.TempDir(), "f16") if err != nil { t.Fatal(err) } defer f.Close() if err := ConvertModel(fsys, f); err != nil { t.Fatal(err) } r, err := os.Open(f.Name()) if err != nil { t.Fatal(err) } t.Cleanup(func() { r.Close() }) m, _, err := llm.DecodeGGML(r, math.MaxInt) if err != nil { t.Fatal(err) } if _, err := r.Seek(0, io.SeekStart); err != nil { t.Fatal(err) } return r, m.KV(), m.Tensors() } func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string { actual := make(map[string]string) for k, v := range kv { if s, ok := v.(json.Marshaler); !ok { actual[k] = fmt.Sprintf("%v", v) } else { bts, err := json.Marshal(s) if err != nil { t.Fatal(err) } actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts)) } } for _, tensor := range tensors.Items { sha256sum := sha256.New() sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size())) if _, err := io.Copy(sha256sum, sr); err != nil { t.Fatal(err) } actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil)) } return actual } func TestMain(m *testing.M) { var level slog.Level flag.TextVar(&level, "level", slog.LevelInfo, "log level") flag.Parse() slog.SetLogLoggerLevel(level) os.Exit(m.Run()) } func TestConvertFull(t *testing.T) { cases := []string{ "Meta-Llama-3-8B-Instruct", "Meta-Llama-3.1-8B-Instruct", "Mistral-7B-Instruct-v0.2", "Mixtral-8x7B-Instruct-v0.1", "gemma-2b-it", // microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8 "Phi-3-mini-128k-instruct", "all-MiniLM-L6-v2", "gemma-2-9b-it", } for i := range cases { tt := cases[i] t.Run(tt, func(t *testing.T) { t.Parallel() p := filepath.Join("testdata", tt) if testing.Short() { t.Skip("skipping in short mode") } else if _, err := os.Stat(p); err != nil { t.Skipf("%s not found", p) } f, kv, tensors := convertFull(t, os.DirFS(p)) actual := generateResultsJSON(t, f, kv, tensors) expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt))) if err != nil { t.Fatal(err) } var expect map[string]string if err := json.NewDecoder(expectFile).Decode(&expect); err != nil { t.Fatal(err) } keys := maps.Keys(expect) slices.Sort(keys) for _, k := range keys { if v, ok := actual[k]; !ok { t.Errorf("missing %s", k) } else if v != expect[k] { t.Errorf("unexpected %s: want %s, got %s", k, expect[k], v) } } }) } } func TestConvertAdapter(t *testing.T) { type AdapterCase struct { Name string BaseKV map[string]any Expected map[string]string } cases := []AdapterCase{ { Name: "discollama", BaseKV: map[string]any{ "general.architecture": "llama", "llama.attention.head_count": uint32(32), "llama.attention.head_count_kv": uint32(8), }, Expected: map[string]string{ "general.architecture": "llama", "general.file_type": "1", "general.parameter_count": "106496", "general.type": "adapter", "general.version": "v0.2", "adapter.lora.alpha": "16", "adapter.type": "lora", "llama.attention.head_count": "32", "llama.attention.head_count_kv": "8", "blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", "blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", "blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50", "blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857", }, }, } for _, c := range cases { t.Run(c.Name, func(t *testing.T) { t.Parallel() f, err := os.CreateTemp(t.TempDir(), "f16") if err != nil { t.Fatal(err) } defer f.Close() tempDir := t.TempDir() generateLoraTestData(t, tempDir) if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil { t.Fatal(err) } r, err := os.Open(f.Name()) if err != nil { t.Fatal(err) } defer r.Close() m, _, err := llm.DecodeGGML(r, math.MaxInt) if err != nil { t.Fatal(err) } if _, err := r.Seek(0, io.SeekStart); err != nil { t.Fatal(err) } actual := generateResultsJSON(t, r, m.KV(), m.Tensors()) keys := maps.Keys(c.Expected) slices.Sort(keys) for _, k := range keys { if v, ok := actual[k]; !ok { t.Errorf("missing %s", k) } else if v != c.Expected[k] { t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v) } } }) } } func generateLoraTestData(t *testing.T, tempDir string) { type tensorData struct { Offsets []int `json:"data_offsets"` Type string `json:"dtype"` Shape []int `json:"shape"` } offset := 4096 * 8 * 4 td := map[string]*tensorData{"__metadata__": nil} td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{ Offsets: []int{0, offset}, Type: "F32", Shape: []int{4096, 8}, } td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{ Offsets: []int{offset, offset * 2}, Type: "F32", Shape: []int{8, 4096}, } td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{ Offsets: []int{offset * 2, offset * 3}, Type: "F32", Shape: []int{4096, 8}, } td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{ Offsets: []int{offset * 3, offset*3 + 8*1024*4}, Type: "F32", Shape: []int{8, 1024}, } data, err := json.Marshal(td) if err != nil { t.Fatal(err) } var buf bytes.Buffer l := int64(len(data)) err = binary.Write(&buf, binary.LittleEndian, l) if err != nil { t.Fatal(err) } _, err = buf.Write(data) if err != nil { t.Fatal(err) } // write some data for the tensors ones := make([]float32, 4096*8) for i := range ones { ones[i] = float32(1) } for range 3 { err = binary.Write(&buf, binary.LittleEndian, ones) if err != nil { t.Fatal(err) } } ones = make([]float32, 1024*8) for i := range ones { ones[i] = float32(1) } err = binary.Write(&buf, binary.LittleEndian, ones) if err != nil { t.Fatal(err) } fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors")) if err != nil { t.Fatal(err) } defer fdata.Close() _, err = fdata.Write(buf.Bytes()) if err != nil { t.Fatal(err) } configData := ` { "adapter_path": "adapters-test", "batch_size": 8, "config": "config-tiny.json", "data": "../discollama-completion", "grad_checkpoint": null, "iters": 1000, "learning_rate": 1e-05, "lora_layers": 1, "lora_parameters": { "rank": 8, "alpha": 16, "dropout": 0.0, "scale": 2.0 }, "lr_schedule": null, "max_seq_length": 2048, "model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct", "resume_adapter_file": null, "save_every": 100, "seed": 0, "steps_per_eval": 200, "steps_per_report": 10, "test": false, "test_batches": 500, "train": true, "use_dora": false, "val_batches": 25 } ` f, err := os.Create(filepath.Join(tempDir, "adapter_config.json")) if err != nil { t.Fatal(err) } defer f.Close() _, err = f.WriteString(configData) if err != nil { t.Fatal(err) } }