diff --git a/src/llama.cpp b/src/llama.cpp index 1fe2b9f7..a43312a7 100644 --- a/src/llama.cpp +++ b/src/llama.cpp @@ -13689,7 +13689,7 @@ static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) { const auto n_embd = hparams.n_embd; // TODO: use a per-batch flag for logits presence instead - const bool has_logits = !cparams.embeddings; + const bool has_logits = cparams.causal_attn; const bool has_embd = lctx.is_encoding || (cparams.embeddings && (cparams.pooling_type == LLAMA_POOLING_TYPE_NONE)); const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0; @@ -13959,17 +13959,25 @@ static int llama_decode_internal( // no output res = nullptr; embd = nullptr; - } else if (cparams.embeddings) { - res = nullptr; // do not extract logits for embedding case - embd = gf->nodes[gf->n_nodes - 1]; - if (strcmp(embd->name, "result_embd_pooled") != 0) { - embd = gf->nodes[gf->n_nodes - 2]; + } + + if (cparams.embeddings) { + for (int i = gf->n_nodes - 1; i >= 0; --i) { + embd = gf->nodes[i]; + if (strcmp(embd->name, "result_embd_pooled") == 0) { + break; + } } GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0 && "missing embeddings tensor"); - } else { + } else { embd = nullptr; // do not extract embeddings when not needed GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor"); } + + if (!cparams.causal_attn) { + res = nullptr; // do not extract logits when not needed + } + // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs); ggml_backend_sched_alloc_graph(lctx.sched, gf);