package convert import ( "cmp" "encoding/binary" "encoding/json" "fmt" "log/slog" "os" "path/filepath" "slices" "strings" "google.golang.org/protobuf/proto" "github.com/ollama/ollama/convert/sentencepiece" "github.com/ollama/ollama/llm" ) type Params struct { Architectures []string `json:"architectures"` VocabSize int `json:"vocab_size"` HiddenSize int `json:"hidden_size"` // n_embd HiddenLayers int `json:"num_hidden_layers"` // n_layer ContextSize int `json:"max_position_embeddings"` IntermediateSize int `json:"intermediate_size"` AttentionHeads int `json:"num_attention_heads"` // n_head KeyValHeads int `json:"num_key_value_heads"` NormEPS float64 `json:"rms_norm_eps"` BoSTokenID int `json:"bos_token_id"` EoSTokenID int `json:"eos_token_id"` HeadDimension int `json:"head_dim"` PaddingTokenID int `json:"pad_token_id"` RopeFrequencyBase float64 `json:"rope_theta"` Experts int `json:"num_local_experts"` ExpertsUsed int `json:"num_experts_per_tok"` ByteOrder } type ByteOrder interface { binary.ByteOrder binary.AppendByteOrder } type ModelArch interface { GetTensors() error LoadVocab() error WriteGGUF() (string, error) } type ModelFormat interface { GetLayerName(string) (string, error) GetTensors(string, *Params) ([]llm.Tensor, error) GetParams(string) (*Params, error) GetModelArch(string, string, *Params) (ModelArch, error) } type ModelData struct { Path string Name string Params *Params Vocab *Vocab Tensors []llm.Tensor Format ModelFormat } func GetModelFormat(dirname string) (ModelFormat, error) { files, err := filepath.Glob(filepath.Join(dirname, "*")) if err != nil { return nil, err } for _, fn := range files { slog.Debug(fmt.Sprintf("file = %s", fn)) if strings.HasSuffix(fn, ".safetensors") { return &SafetensorFormat{}, nil } else if strings.HasSuffix(fn, ".bin") { slog.Debug("model is torch") return &TorchFormat{}, nil } } return nil, fmt.Errorf("couldn't determine model format") } // Details on gguf's tokenizer can be found at: // https://github.com/ggerganov/ggml/blob/master/docs/gguf.md#tokenizer type Vocab struct { Tokens []string Scores []float32 Types []int32 } func LoadSentencePieceTokens(dirpath string, params *Params) (*Vocab, error) { slog.Info(fmt.Sprintf("reading vocab from %s", filepath.Join(dirpath, "tokenizer.model"))) in, err := os.ReadFile(filepath.Join(dirpath, "tokenizer.model")) if err != nil { return nil, err } // To regenerate sentencepiece from the protobufs use: // protoc -I=./ --go_out=./ sentencepiece_model.proto modelProto := &sentencepiece.ModelProto{} if err := proto.Unmarshal(in, modelProto); err != nil { return nil, err } v := &Vocab{ Tokens: make([]string, 0), Scores: make([]float32, 0), Types: make([]int32, 0), } pieces := modelProto.GetPieces() for _, p := range pieces { v.Tokens = append(v.Tokens, p.GetPiece()) v.Scores = append(v.Scores, p.GetScore()) t := p.GetType() switch t { case sentencepiece.ModelProto_SentencePiece_UNKNOWN: case sentencepiece.ModelProto_SentencePiece_CONTROL: case sentencepiece.ModelProto_SentencePiece_UNUSED: case sentencepiece.ModelProto_SentencePiece_BYTE: default: t = sentencepiece.ModelProto_SentencePiece_NORMAL } v.Types = append(v.Types, int32(t)) } slog.Info(fmt.Sprintf("vocab size: %d", len(v.Tokens))) // add any additional tokens addIn, err := os.ReadFile(filepath.Join(dirpath, "added_tokens.json")) if os.IsNotExist(err) { return v, nil } else if err != nil { return nil, err } slog.Info("reading user defined tokens") var extraTokenData map[string]int if err := json.Unmarshal(addIn, &extraTokenData); err != nil { return nil, err } type token struct { key string pos int } extraTokens := make([]token, 0) for k, id := range extraTokenData { extraTokens = append(extraTokens, token{k, id}) } slices.SortFunc(extraTokens, func(a, b token) int { return cmp.Compare(a.pos, b.pos) }) numToks := len(v.Tokens) for cnt, t := range extraTokens { // the token id should match the specific index for the total number of tokens if t.pos != cnt+numToks { return nil, fmt.Errorf("token ID '%d' for '%s' doesn't match total token size", t.pos, t.key) } v.Tokens = append(v.Tokens, t.key) v.Scores = append(v.Scores, -1000.0) v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined)) } slog.Info(fmt.Sprintf("vocab size w/ extra tokens: %d", len(v.Tokens))) if params.VocabSize > len(v.Tokens) { missingTokens := params.VocabSize - len(v.Tokens) slog.Warn(fmt.Sprintf("vocab is missing %d tokens", missingTokens)) for cnt := 0; cnt < missingTokens; cnt++ { v.Tokens = append(v.Tokens, fmt.Sprintf("", cnt+1)) v.Scores = append(v.Scores, -1) v.Types = append(v.Types, int32(llm.GGUFTokenUserDefined)) } } return v, nil }