/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "sampling.h" #include "common.h" #include #include // the ring buffer works similarly to std::deque, but with a fixed capacity // TODO: deduplicate with llama-impl.h template struct ring_buffer { ring_buffer(size_t cap) : capacity(cap), data(cap) {} T & front() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[first]; } const T & front() const { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[first]; } T & back() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[pos]; } const T & back() const { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } return data[pos]; } void push_back(const T & value) { if (sz == capacity) { // advance the start when buffer is full first = (first + 1) % capacity; } else { sz++; } data[pos] = value; pos = (pos + 1) % capacity; } T pop_front() { if (sz == 0) { throw std::runtime_error("ring buffer is empty"); } T value = data[first]; first = (first + 1) % capacity; sz--; return value; } const T & rat(size_t i) const { if (i >= sz) { throw std::runtime_error("ring buffer: index out of bounds"); } return data[(first + sz - i - 1) % capacity]; } std::vector to_vector() const { std::vector result; result.reserve(sz); for (size_t i = 0; i < sz; i++) { result.push_back(data[(first + i) % capacity]); } return result; } void clear() { // here only reset the status of the buffer sz = 0; first = 0; pos = 0; } bool empty() const { return sz == 0; } size_t size() const { return sz; } size_t capacity = 0; size_t sz = 0; size_t first = 0; size_t pos = 0; std::vector data; }; struct gpt_sampler { gpt_sampler_params params; struct llama_sampler * grmr; struct llama_sampler * chain; ring_buffer prev; std::vector cur; llama_token_data_array cur_p; void set_logits(struct llama_context * ctx, int idx) { const auto * logits = llama_get_logits_ith(ctx, idx); const int n_vocab = llama_n_vocab(llama_get_model(ctx)); cur.resize(n_vocab); for (llama_token token_id = 0; token_id < n_vocab; token_id++) { cur[token_id] = llama_token_data{token_id, logits[token_id], 0.0f}; } cur_p = { cur.data(), cur.size(), -1, false }; } }; std::string gpt_sampler_params::print() const { char result[1024]; snprintf(result, sizeof(result), "\trepeat_last_n = %d, repeat_penalty = %.3f, frequency_penalty = %.3f, presence_penalty = %.3f\n" "\ttop_k = %d, tfs_z = %.3f, top_p = %.3f, min_p = %.3f, typical_p = %.3f, temp = %.3f\n" "\tmirostat = %d, mirostat_lr = %.3f, mirostat_ent = %.3f", penalty_last_n, penalty_repeat, penalty_freq, penalty_present, top_k, tfs_z, top_p, min_p, typ_p, temp, mirostat, mirostat_eta, mirostat_tau); return std::string(result); } struct gpt_sampler * gpt_sampler_init(const struct llama_model * model, const struct gpt_sampler_params & params) { llama_sampler_chain_params lparams = llama_sampler_chain_default_params(); lparams.no_perf = params.no_perf; auto * result = new gpt_sampler { /* .params = */ params, /* .grmr = */ llama_sampler_init_grammar(model, params.grammar.c_str(), "root"), /* .chain = */ llama_sampler_chain_init(lparams), /* .prev = */ ring_buffer(std::max(32, params.n_prev)), /* .cur = */ {}, /* .cur_p = */ {}, }; llama_sampler_chain_add(result->chain, llama_sampler_init_logit_bias( llama_n_vocab(model), params.logit_bias.size(), params.logit_bias.data())); llama_sampler_chain_add(result->chain, llama_sampler_init_penalties( llama_n_vocab (model), llama_token_eos(model), llama_token_nl (model), params.penalty_last_n, params.penalty_repeat, params.penalty_freq, params.penalty_present, params.penalize_nl, params.ignore_eos)); if (params.temp > 0.0f) { if (params.mirostat == 0) { for (const auto & cnstr : params.samplers) { switch (cnstr) { case GPT_SAMPLER_TYPE_TOP_K: llama_sampler_chain_add(result->chain, llama_sampler_init_top_k (params.top_k)); break; case GPT_SAMPLER_TYPE_TOP_P: llama_sampler_chain_add(result->chain, llama_sampler_init_top_p (params.top_p, params.min_keep)); break; case GPT_SAMPLER_TYPE_MIN_P: llama_sampler_chain_add(result->chain, llama_sampler_init_min_p (params.min_p, params.min_keep)); break; case GPT_SAMPLER_TYPE_TFS_Z: llama_sampler_chain_add(result->chain, llama_sampler_init_tail_free(params.tfs_z, params.min_keep)); break; case GPT_SAMPLER_TYPE_TYPICAL_P: llama_sampler_chain_add(result->chain, llama_sampler_init_typical (params.typ_p, params.min_keep)); break; case GPT_SAMPLER_TYPE_TEMPERATURE: llama_sampler_chain_add(result->chain, llama_sampler_init_temp_ext (params.temp, params.dynatemp_range, params.dynatemp_exponent)); break; default: GGML_ASSERT(false && "unknown sampler type"); } } llama_sampler_chain_add(result->chain, llama_sampler_init_softmax()); llama_sampler_chain_add(result->chain, llama_sampler_init_dist(params.seed)); } else if (params.mirostat == 1) { llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp)); llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat(llama_n_vocab(model), params.seed, params.mirostat_tau, params.mirostat_eta, 100)); } else if (params.mirostat == 2) { llama_sampler_chain_add(result->chain, llama_sampler_init_temp(params.temp)); llama_sampler_chain_add(result->chain, llama_sampler_init_mirostat_v2(params.seed, params.mirostat_tau, params.mirostat_eta)); } else { GGML_ASSERT(false && "unknown mirostat version"); } } else { if (params.n_probs > 0) { // some use cases require to sample greedily, but still obtain the probabilities of the top tokens // ref: https://github.com/ggerganov/llama.cpp/pull/9605 // // the following will not produce exactly the same probs as applyging softmax to the full vocabulary, but // it is much faster, since we avoid sorting all tokens and should give a good approximation llama_sampler_chain_add(result->chain, llama_sampler_init_top_k(params.n_probs)); llama_sampler_chain_add(result->chain, llama_sampler_init_softmax()); } llama_sampler_chain_add(result->chain, llama_sampler_init_greedy()); } return result; } void gpt_sampler_free(struct gpt_sampler * gsmpl) { if (gsmpl) { llama_sampler_free(gsmpl->grmr); llama_sampler_free(gsmpl->chain); delete gsmpl; } } void gpt_sampler_accept(struct gpt_sampler * gsmpl, llama_token token, bool accept_grammar) { if (accept_grammar) { llama_sampler_accept(gsmpl->grmr, token); } llama_sampler_accept(gsmpl->chain, token); gsmpl->prev.push_back(token); } void gpt_sampler_reset(struct gpt_sampler * gsmpl) { llama_sampler_reset(gsmpl->grmr); llama_sampler_reset(gsmpl->chain); } struct gpt_sampler * gpt_sampler_clone(gpt_sampler * gsmpl) { return new gpt_sampler { /* .params = */ gsmpl->params, /* .grmr = */ llama_sampler_clone(gsmpl->grmr), /* .chain = */ llama_sampler_clone(gsmpl->chain), /* .prev = */ gsmpl->prev, /* .cur = */ gsmpl->cur, /* .cur_p = */ gsmpl->cur_p, }; } void gpt_perf_print(const struct llama_context * ctx, const struct gpt_sampler * gsmpl) { // TODO: measure grammar performance if (gsmpl) { llama_perf_sampler_print(gsmpl->chain); } if (ctx) { llama_perf_context_print(ctx); } } llama_token gpt_sampler_sample(struct gpt_sampler * gsmpl, struct llama_context * ctx, int idx, bool grammar_first) { gsmpl->set_logits(ctx, idx); auto & grmr = gsmpl->grmr; auto & chain = gsmpl->chain; auto & cur_p = gsmpl->cur_p; // initialized by set_logits if (grammar_first) { llama_sampler_apply(grmr, &cur_p); } llama_sampler_apply(chain, &cur_p); GGML_ASSERT(cur_p.selected != -1 && "no selected token during sampling - check your sampling configuration"); const llama_token id = cur_p.data[cur_p.selected].id; if (grammar_first) { return id; } // check if it the sampled token fits the grammar { llama_token_data single_token_data = { id, 1.0f, 0.0f }; llama_token_data_array single_token_data_array = { &single_token_data, 1, -1, false }; llama_sampler_apply(grmr, &single_token_data_array); const bool is_valid = single_token_data_array.data[0].logit != -INFINITY; if (is_valid) { return id; } } // resampling: // if the token is not valid, sample again, but first apply the grammar sampler and then the sampling chain gsmpl->set_logits(ctx, idx); llama_sampler_apply(grmr, &cur_p); llama_sampler_apply(chain, &cur_p); GGML_ASSERT(cur_p.selected != -1 && "no selected token during re-sampling - check your sampling configuration"); return cur_p.data[cur_p.selected].id; } uint32_t gpt_sampler_get_seed(const struct gpt_sampler * gsmpl) { return llama_sampler_get_seed(gsmpl->chain); } // helpers llama_token_data_array * gpt_sampler_get_candidates(struct gpt_sampler * gsmpl) { return &gsmpl->cur_p; } llama_token gpt_sampler_last(const struct gpt_sampler * gsmpl) { return gsmpl->prev.rat(0); } std::string gpt_sampler_print(const struct gpt_sampler * gsmpl) { std::string result = "logits "; for (int i = 0; i < llama_sampler_chain_n(gsmpl->chain); i++) { const auto * smpl = llama_sampler_chain_get(gsmpl->chain, i); result += std::string("-> ") + llama_sampler_name(smpl) + " "; } return result; } std::string gpt_sampler_prev_str(gpt_sampler * gsmpl, llama_context * ctx_main, int n) { n = std::min(n, (int) gsmpl->prev.size()); if (n <= 0) { return ""; } std::string result; result.reserve(8*n); // 8 is the average length of a token [citation needed], TODO: compute this from the vocab for (int i = n - 1; i >= 0; i--) { const llama_token id = gsmpl->prev.rat(i); GGML_ASSERT(id != LLAMA_TOKEN_NULL && "null token in the sampling history - should not happen"); result += llama_token_to_piece(ctx_main, id); } return result; } char gpt_sampler_type_to_chr(enum gpt_sampler_type cnstr) { switch (cnstr) { case GPT_SAMPLER_TYPE_TOP_K: return 'k'; case GPT_SAMPLER_TYPE_TFS_Z: return 'f'; case GPT_SAMPLER_TYPE_TYPICAL_P: return 'y'; case GPT_SAMPLER_TYPE_TOP_P: return 'p'; case GPT_SAMPLER_TYPE_MIN_P: return 'm'; case GPT_SAMPLER_TYPE_TEMPERATURE: return 't'; default : return '?'; } } std::string gpt_sampler_type_to_str(enum gpt_sampler_type cnstr) { switch (cnstr) { case GPT_SAMPLER_TYPE_TOP_K: return "top_k"; case GPT_SAMPLER_TYPE_TFS_Z: return "tfs_z"; case GPT_SAMPLER_TYPE_TYPICAL_P: return "typ_p"; case GPT_SAMPLER_TYPE_TOP_P: return "top_p"; case GPT_SAMPLER_TYPE_MIN_P: return "min_p"; case GPT_SAMPLER_TYPE_TEMPERATURE: return "temperature"; default : return ""; } } std::vector gpt_sampler_types_from_names(const std::vector & names, bool allow_alt_names) { std::unordered_map sampler_canonical_name_map { { "top_k", GPT_SAMPLER_TYPE_TOP_K }, { "top_p", GPT_SAMPLER_TYPE_TOP_P }, { "typ_p", GPT_SAMPLER_TYPE_TYPICAL_P }, { "min_p", GPT_SAMPLER_TYPE_MIN_P }, { "tfs_z", GPT_SAMPLER_TYPE_TFS_Z }, { "temperature", GPT_SAMPLER_TYPE_TEMPERATURE }, }; // since samplers names are written multiple ways // make it ready for both system names and input names std::unordered_map sampler_alt_name_map { { "top-k", GPT_SAMPLER_TYPE_TOP_K }, { "top-p", GPT_SAMPLER_TYPE_TOP_P }, { "nucleus", GPT_SAMPLER_TYPE_TOP_P }, { "typical-p", GPT_SAMPLER_TYPE_TYPICAL_P }, { "typical", GPT_SAMPLER_TYPE_TYPICAL_P }, { "typ-p", GPT_SAMPLER_TYPE_TYPICAL_P }, { "typ", GPT_SAMPLER_TYPE_TYPICAL_P }, { "min-p", GPT_SAMPLER_TYPE_MIN_P }, { "tfs-z", GPT_SAMPLER_TYPE_TFS_Z }, { "tfs", GPT_SAMPLER_TYPE_TFS_Z }, { "temp", GPT_SAMPLER_TYPE_TEMPERATURE }, }; std::vector samplers; samplers.reserve(names.size()); for (const auto & name : names) { auto sampler = sampler_canonical_name_map.find(name); if (sampler != sampler_canonical_name_map.end()) { samplers.push_back(sampler->second); } else { if (allow_alt_names) { sampler = sampler_alt_name_map.find(name); if (sampler != sampler_alt_name_map.end()) { samplers.push_back(sampler->second); } } } } return samplers; } std::vector gpt_sampler_types_from_chars(const std::string & chars) { std::unordered_map sampler_name_map = { { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_K), GPT_SAMPLER_TYPE_TOP_K }, { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TFS_Z), GPT_SAMPLER_TYPE_TFS_Z }, { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TYPICAL_P), GPT_SAMPLER_TYPE_TYPICAL_P }, { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TOP_P), GPT_SAMPLER_TYPE_TOP_P }, { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_MIN_P), GPT_SAMPLER_TYPE_MIN_P }, { gpt_sampler_type_to_chr(GPT_SAMPLER_TYPE_TEMPERATURE), GPT_SAMPLER_TYPE_TEMPERATURE } }; std::vector samplers; samplers.reserve(chars.size()); for (const auto & c : chars) { const auto sampler = sampler_name_map.find(c); if (sampler != sampler_name_map.end()) { samplers.push_back(sampler->second); } } return samplers; }