logo
# Ollama [![Discord](https://dcbadge.vercel.app/api/server/ollama?style=flat&compact=true)](https://discord.gg/ollama) Get up and running with large language models locally. ### macOS [Download](https://ollama.ai/download/Ollama-darwin.zip) ### Windows Coming soon! ### Linux & WSL2 ``` curl https://ollama.ai/install.sh | sh ``` [Manual install instructions](https://github.com/jmorganca/ollama/blob/main/docs/linux.md) ### Docker The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `ollama/ollama` is available on Docker Hub. ## Quickstart To run and chat with [Llama 2](https://ollama.ai/library/llama2): ``` ollama run llama2 ``` ## Model library Ollama supports a list of open-source models available on [ollama.ai/library](https://ollama.ai/library 'ollama model library') Here are some example open-source models that can be downloaded: | Model | Parameters | Size | Download | | ------------------ | ---------- | ----- | ------------------------------ | | Mistral | 7B | 4.1GB | `ollama run mistral` | | Llama 2 | 7B | 3.8GB | `ollama run llama2` | | Code Llama | 7B | 3.8GB | `ollama run codellama` | | Llama 2 Uncensored | 7B | 3.8GB | `ollama run llama2-uncensored` | | Llama 2 13B | 13B | 7.3GB | `ollama run llama2:13b` | | Llama 2 70B | 70B | 39GB | `ollama run llama2:70b` | | Orca Mini | 3B | 1.9GB | `ollama run orca-mini` | | Vicuna | 7B | 3.8GB | `ollama run vicuna` | > Note: You should have at least 8 GB of RAM to run the 3B models, 16 GB to run the 7B models, and 32 GB to run the 13B models. ## Customize your own model ### Import from GGUF Ollama supports importing GGUF models in the Modelfile: 1. Create a file named `Modelfile`, with a `FROM` instruction with the local filepath to the model you want to import. ``` FROM ./vicuna-33b.Q4_0.gguf ``` 2. Create the model in Ollama ``` ollama create example -f Modelfile ``` 3. Run the model ``` ollama run example ``` ### Import from PyTorch or Safetensors See the [guide](docs/import.md) on importing models for more information. ### Customize a prompt Models from the Ollama library can be customized with a prompt. For example, to customize the `llama2` model: ``` ollama pull llama2 ``` Create a `Modelfile`: ``` FROM llama2 # set the temperature to 1 [higher is more creative, lower is more coherent] PARAMETER temperature 1 # set the system prompt SYSTEM """ You are Mario from Super Mario Bros. Answer as Mario, the assistant, only. """ ``` Next, create and run the model: ``` ollama create mario -f ./Modelfile ollama run mario >>> hi Hello! It's your friend Mario. ``` For more examples, see the [examples](examples) directory. For more information on working with a Modelfile, see the [Modelfile](docs/modelfile.md) documentation. ## CLI Reference ### Create a model `ollama create` is used to create a model from a Modelfile. ### Pull a model ``` ollama pull llama2 ``` > This command can also be used to update a local model. Only the diff will be pulled. ### Remove a model ``` ollama rm llama2 ``` ### Copy a model ``` ollama cp llama2 my-llama2 ``` ### Multiline input For multiline input, you can wrap text with `"""`: ``` >>> """Hello, ... world! ... """ I'm a basic program that prints the famous "Hello, world!" message to the console. ``` ### Pass in prompt as arguments ``` $ ollama run llama2 "Summarize this file: $(cat README.md)" Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications. ``` ### List models on your computer ``` ollama list ``` ### Start Ollama `ollama serve` is used when you want to start ollama without running the desktop application. ## Building Install `cmake` and `go`: ``` brew install cmake go ``` Then generate dependencies and build: ``` go generate ./... go build . ``` Next, start the server: ``` ./ollama serve ``` Finally, in a separate shell, run a model: ``` ./ollama run llama2 ``` ## REST API Ollama has a REST API for running and managing models. For example, to generate text from a model: ``` curl http://localhost:11434/api/generate -d '{ "model": "llama2", "prompt":"Why is the sky blue?" }' ``` See the [API documentation](./docs/api.md) for all endpoints. ## Community Integrations ### Mobile - [Mobile Artificial Intelligence Distribution](https://github.com/MaidFoundation/Maid) (Maid) ### Web & Desktop - [HTML UI](https://github.com/rtcfirefly/ollama-ui) - [Chatbot UI](https://github.com/ivanfioravanti/chatbot-ollama) - [Typescript UI](https://github.com/ollama-interface/Ollama-Gui?tab=readme-ov-file) - [Minimalistic React UI for Ollama Models](https://github.com/richawo/minimal-llm-ui) - [Web UI](https://github.com/ollama-webui/ollama-webui) - [Ollamac](https://github.com/kevinhermawan/Ollamac) - [big-AGI](https://github.com/enricoros/big-agi/blob/main/docs/config-ollama.md) - [Cheshire Cat assistant framework](https://github.com/cheshire-cat-ai/core) ### Terminal - [oterm](https://github.com/ggozad/oterm) - [Ellama Emacs client](https://github.com/s-kostyaev/ellama) - [Emacs client](https://github.com/zweifisch/ollama) - [gen.nvim](https://github.com/David-Kunz/gen.nvim) - [ollama.nvim](https://github.com/nomnivore/ollama.nvim) - [ogpt.nvim](https://github.com/huynle/ogpt.nvim) - [gptel Emacs client](https://github.com/karthink/gptel) - [Oatmeal](https://github.com/dustinblackman/oatmeal) ### Package managers - [Pacman](https://archlinux.org/packages/extra/x86_64/ollama/) ### Libraries - [LangChain](https://python.langchain.com/docs/integrations/llms/ollama) and [LangChain.js](https://js.langchain.com/docs/modules/model_io/models/llms/integrations/ollama) with [example](https://js.langchain.com/docs/use_cases/question_answering/local_retrieval_qa) - [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example) - [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html) - [LiteLLM](https://github.com/BerriAI/litellm) - [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp) - [Ollama-rs for Rust](https://github.com/pepperoni21/ollama-rs) - [Ollama4j for Java](https://github.com/amithkoujalgi/ollama4j) - [ModelFusion Typescript Library](https://modelfusion.dev/integration/model-provider/ollama) - [OllamaKit for Swift](https://github.com/kevinhermawan/OllamaKit) - [Ollama for Dart](https://github.com/breitburg/dart-ollama) - [Ollama for Laravel](https://github.com/cloudstudio/ollama-laravel) ### Mobile - [Maid](https://github.com/danemadsen/Maid) (Mobile Artificial Intelligence Distribution) ### Extensions & Plugins - [Raycast extension](https://github.com/MassimilianoPasquini97/raycast_ollama) - [Discollama](https://github.com/mxyng/discollama) (Discord bot inside the Ollama discord channel) - [Continue](https://github.com/continuedev/continue) - [Obsidian Ollama plugin](https://github.com/hinterdupfinger/obsidian-ollama) - [Logseq Ollama plugin](https://github.com/omagdy7/ollama-logseq) - [Dagger Chatbot](https://github.com/samalba/dagger-chatbot) - [Discord AI Bot](https://github.com/mekb-turtle/discord-ai-bot) - [Hass Ollama Conversation](https://github.com/ej52/hass-ollama-conversation) - [Rivet plugin](https://github.com/abrenneke/rivet-plugin-ollama) - [Llama Coder](https://github.com/ex3ndr/llama-coder) (Copilot alternative using Ollama)