package convert import ( "cmp" "fmt" "math" "strings" "github.com/pdevine/tensor" "github.com/pdevine/tensor/native" "github.com/ollama/ollama/llm" ) type llamaModel struct { ModelParameters NLayers uint32 `json:"n_layers"` NumHiddenLayers uint32 `json:"num_hidden_layers"` NLayer uint32 `json:"n_layer"` MaxPositionEmbeddings uint32 `json:"max_position_embeddings"` NCtx uint32 `json:"n_ctx"` HiddenSize uint32 `json:"hidden_size"` NEmbd uint32 `json:"n_embd"` IntermediateSize uint32 `json:"intermediate_size"` NInner uint32 `json:"n_inner"` NumAttentionHeads uint32 `json:"num_attention_heads"` NHead uint32 `json:"n_head"` NumKeyValueHeads uint32 `json:"num_key_value_heads"` RopeTheta float32 `json:"rope_theta"` RopeScaling struct { Type string `json:"type"` RopeType string `json:"rope_type"` Factor float32 `json:"factor"` LowFrequencyFactor float32 `json:"low_freq_factor"` HighFrequencyFactor float32 `json:"high_freq_factor"` OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"` factors ropeFactor } `json:"rope_scaling"` RMSNormEPS float32 `json:"rms_norm_eps"` LayerNormEPS float32 `json:"layer_norm_eps"` LayerNormEpsilon float32 `json:"layer_norm_epsilon"` NormEpsilon float32 `json:"norm_epsilon"` HeadDim uint32 `json:"head_dim"` } var _ ModelConverter = (*llamaModel)(nil) func (p *llamaModel) KV(t *Tokenizer) llm.KV { kv := p.ModelParameters.KV(t) kv["general.architecture"] = "llama" kv["llama.vocab_size"] = p.VocabSize kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer) if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 { kv["llama.context_length"] = contextLength } if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 { kv["llama.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd) } if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 { kv["llama.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner) } if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 { kv["llama.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead) kv["llama.rope.dimension_count"] = p.HiddenSize / headCount } if p.RopeTheta > 0 { kv["llama.rope.freq_base"] = p.RopeTheta } if p.RopeScaling.Type == "linear" { kv["llama.rope.scaling.type"] = p.RopeScaling.Type kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor } else if p.RopeScaling.RopeType == "llama3" { dim := p.HiddenSize / p.NumAttentionHeads for i := uint32(0); i < dim; i += 2 { factor := cmp.Or(p.RopeScaling.Factor, 8.0) factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0) factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0) original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192) lambdaLow := float32(original) / factorLow lambdaHigh := float32(original) / factorHigh lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim)) if lambda < float64(lambdaHigh) { p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0) } else if lambda > float64(lambdaLow) { p.RopeScaling.factors = append(p.RopeScaling.factors, factor) } else { smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow) p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth)) } } } if p.NumKeyValueHeads > 0 { kv["llama.attention.head_count_kv"] = p.NumKeyValueHeads } if p.RMSNormEPS > 0 { kv["llama.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS } if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 { kv["llama.attention.layer_norm_epsilon"] = layerNormEpsilon } if p.HeadDim > 0 { kv["llama.attention.key_length"] = p.HeadDim kv["llama.attention.value_length"] = p.HeadDim } return kv } func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor { var out []llm.Tensor if p.RopeScaling.factors != nil { out = append(out, llm.Tensor{ Name: "rope_freqs.weight", Kind: 0, Shape: []uint64{uint64(len(p.RopeScaling.factors))}, WriterTo: p.RopeScaling.factors, }) } for _, t := range ts { if strings.HasSuffix(t.Name(), "attn_q.weight") || strings.HasSuffix(t.Name(), "attn_k.weight") { t.SetRepacker(p.repack) } out = append(out, llm.Tensor{ Name: t.Name(), Kind: t.Kind(), Shape: t.Shape(), WriterTo: t, }) } return out } func (p *llamaModel) Replacements() []string { return []string{ "lm_head", "output", "model.embed_tokens", "token_embd", "model.norm", "output_norm", "model.layers", "blk", "input_layernorm", "attn_norm", "self_attn.q_proj", "attn_q", "self_attn.k_proj", "attn_k", "self_attn.v_proj", "attn_v", "self_attn.o_proj", "attn_output", "mlp.gate_proj", "ffn_gate", "mlp.down_proj", "ffn_down", "mlp.up_proj", "ffn_up", "post_attention_layernorm", "ffn_norm", } } func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) { var dims []int for _, dim := range shape { dims = append(dims, int(dim)) } var heads uint32 if strings.HasSuffix(name, "attn_q.weight") { heads = p.NumAttentionHeads } else if strings.HasSuffix(name, "attn_k.weight") { heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads) } else { return nil, fmt.Errorf("unknown tensor for repack: %s", name) } n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data)) if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil { return nil, err } if err := n.T(0, 2, 1, 3); err != nil { return nil, err } if err := n.Reshape(dims...); err != nil { return nil, err } if err := n.Transpose(); err != nil { return nil, err } ts, err := native.SelectF32(n, 1) if err != nil { return nil, err } var f32s []float32 for _, t := range ts { f32s = append(f32s, t...) } return f32s, nil }