import { Ollama } from "ollama-node"; import { readFile } from "fs/promises"; async function main() { const ollama = new Ollama(); // Set the system prompt to prepare the model to receive a prompt and a schema and set some rules for the output. const systemprompt = `You will be given a text along with a prompt and a schema. You will have to extract the information requested in the prompt from the text and generate output in JSON observing the schema provided. If the schema shows a type of integer or number, you must only show a integer for that field. A string should always be a valid string. If a value is unknown, leave it empty. Output the JSON with extra spaces to ensure that it pretty prints.` const schema = { "people": [{ "name": { "type": "string", "description": "Name of the person" }, "title": { "type": "string", "description": "Title of the person" } }], } // Depending on the model chosen, you may be limited by the size of the context window, so limit the context to 2000 words. const textcontent = await readFile("./wp.txt", "utf-8").then((text) => text.split(" ").slice(0, 2000).join(" ")); // Specific instructions for this task const prompt = `Review the source text and determine the 10 most important people to focus on. Then extract the name and title for those people. Output should be in JSON.\n\nSchema: \n${JSON.stringify(schema, null, 2)}\n\nSource Text:\n${textcontent}` await ollama.setModel("neural-chat"); ollama.setSystemPrompt(systemprompt); // setJSONFormat is the equivalent of setting 'format: json' in the API ollama.setJSONFormat(true); await ollama.streamingGenerate(prompt, (word) => { process.stdout.write(word) }) } main();