package server import ( "context" "errors" "fmt" "log/slog" "os" "reflect" "sort" "strconv" "strings" "sync" "time" "github.com/ollama/ollama/api" "github.com/ollama/ollama/format" "github.com/ollama/ollama/gpu" "github.com/ollama/ollama/llm" "golang.org/x/exp/slices" ) type LlmRequest struct { ctx context.Context //nolint:containedctx model *Model opts api.Options sessionDuration time.Duration successCh chan *runnerRef errCh chan error } type Scheduler struct { pendingReqCh chan *LlmRequest finishedReqCh chan *LlmRequest expiredCh chan *runnerRef unloadedCh chan interface{} loaded map[string]*runnerRef loadedMu sync.Mutex loadFn func(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) newServerFn func(gpus gpu.GpuInfoList, model string, ggml *llm.GGML, adapters []string, projectors []string, opts api.Options) (llm.LlamaServer, error) getGpuFn func() gpu.GpuInfoList } // TODO set this to zero after a release or two, to enable multiple models by default var loadedMax = 1 // Maximum runners; < 1 maps to as many as will fit in VRAM (unlimited for CPU runners) var maxQueuedRequests = 10 // TODO configurable var numParallel = 1 func InitScheduler(ctx context.Context) *Scheduler { maxRunners := os.Getenv("OLLAMA_MAX_LOADED_MODELS") if maxRunners != "" { m, err := strconv.Atoi(maxRunners) if err != nil { slog.Error("invalid setting", "OLLAMA_MAX_LOADED_MODELS", maxRunners, "error", err) } else { loadedMax = m } } if onp := os.Getenv("OLLAMA_NUM_PARALLEL"); onp != "" { p, err := strconv.Atoi(onp) if err != nil || p <= 0 { slog.Error("invalid parallel setting, must be greater than zero", "OLLAMA_NUM_PARALLEL", onp, "error", err) } else { numParallel = p } } sched := &Scheduler{ pendingReqCh: make(chan *LlmRequest, maxQueuedRequests), finishedReqCh: make(chan *LlmRequest, maxQueuedRequests), expiredCh: make(chan *runnerRef, maxQueuedRequests), unloadedCh: make(chan interface{}, maxQueuedRequests), loaded: make(map[string]*runnerRef), newServerFn: llm.NewLlamaServer, getGpuFn: gpu.GetGPUInfo, } sched.loadFn = sched.load return sched } // context must be canceled to decrement ref count and release the runner func (s *Scheduler) GetRunner(c context.Context, model *Model, opts api.Options, sessionDuration time.Duration) (chan *runnerRef, chan error) { req := &LlmRequest{ ctx: c, model: model, opts: opts, sessionDuration: sessionDuration, successCh: make(chan *runnerRef), errCh: make(chan error, 1), } // context split across parallel threads opts.NumCtx = opts.NumCtx * numParallel select { case s.pendingReqCh <- req: default: req.errCh <- fmt.Errorf("server busy, please try again. maximum pending requests exceeded") } return req.successCh, req.errCh } // Returns immediately, spawns go routines for the scheduler which will shutdown when ctx is done func (s *Scheduler) Run(ctx context.Context) { slog.Debug("starting llm scheduler") go func() { s.processPending(ctx) }() go func() { s.processCompleted(ctx) }() } func (s *Scheduler) processPending(ctx context.Context) { for { select { case <-ctx.Done(): slog.Debug("shutting down scheduler pending loop") return case pending := <-s.pendingReqCh: // Block other requests until we get this pending request running for { var runnerToExpire *runnerRef s.loadedMu.Lock() runner := s.loaded[pending.model.ModelPath] loadedCount := len(s.loaded) s.loadedMu.Unlock() if runner != nil { if runner.needsReload(ctx, pending) { runnerToExpire = runner } else { // Runner is usable, return it pending.useLoadedRunner(runner, s.finishedReqCh) break } } else if loadedMax > 0 && loadedCount >= loadedMax { slog.Debug("max runners achieved, unloading one to make room", "runner_count", loadedCount) runnerToExpire = s.findRunnerToUnload(pending) } else { // Either no models are loaded or below loadedMax // Get a refreshed GPU list gpus := s.getGpuFn() // Load model for fitting ggml, err := llm.LoadModel(pending.model.ModelPath) if err != nil { pending.errCh <- err break } // If we're CPU only mode, just limit by loadedMax above // TODO handle system memory exhaustion if (len(gpus) == 1 && gpus[0].Library == "cpu") || pending.opts.NumGPU == 0 { slog.Debug("cpu mode with existing models, loading") s.loadFn(pending, ggml, gpus) break } // No models loaded. Load the model but prefer the best fit. if loadedCount == 0 { slog.Debug("loading first model", "model", pending.model.ModelPath) g := pickBestFitGPUs(pending, ggml, gpus) if g != nil { gpus = g } s.loadFn(pending, ggml, gpus) break } // More than one loaded model, so we have to see if the new one fits // Update free memory from currently loaded models s.updateFreeSpace(gpus) gpus = pickBestFitGPUs(pending, ggml, gpus) if gpus != nil { slog.Debug("new model fits with existing models, loading") s.loadFn(pending, ggml, gpus) break } runnerToExpire = s.findRunnerToUnload(pending) } if runnerToExpire == nil { // Shouildn't happen slog.Error("runner to expire was nil!") continue } // Trigger an expiration to unload once it's done runnerToExpire.refMu.Lock() slog.Debug("resetting model to expire immediately to make room", "model", runnerToExpire.model, "refCount", runnerToExpire.refCount) if runnerToExpire.expireTimer != nil { runnerToExpire.expireTimer.Stop() runnerToExpire.expireTimer = nil } runnerToExpire.sessionDuration = 0 if runnerToExpire.refCount <= 0 { s.expiredCh <- runnerToExpire } runnerToExpire.refMu.Unlock() // Wait for the unload to happen // Note: at this point we're queueing up all incoming requests, even if they were for // a different model that's loaded and not scheduled to be removed. slog.Debug("waiting for pending requests to complete and unload to occur", "model", runnerToExpire.model) select { case <-ctx.Done(): slog.Debug("shutting down scheduler pending loop") return case <-s.unloadedCh: slog.Debug("unload completed", "model", runnerToExpire.model) continue } } case <-s.unloadedCh: // An unload request when there are no pending request can be ignored slog.Debug("ignoring unload event with no pending requests") } } } func (s *Scheduler) processCompleted(ctx context.Context) { // Process completed requests, expired timers, and unloading models for { select { case <-ctx.Done(): slog.Debug("shutting down scheduler completed loop") return case finished := <-s.finishedReqCh: s.loadedMu.Lock() runner := s.loaded[finished.model.ModelPath] s.loadedMu.Unlock() if runner == nil { slog.Error("finished requeset signal received after model unloaded", "model", finished.model.ModelPath) continue } runner.refMu.Lock() runner.refCount-- if runner.refCount <= 0 { if runner.sessionDuration <= 0 { slog.Debug("runner with zero duration has gone idle, expiring to unload", "model", runner.model) if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } s.expiredCh <- runner } else if runner.expireTimer == nil { slog.Debug("runner with non-zero duration has gone idle, adding timer", "model", runner.model, "duration", runner.sessionDuration) runner.expireTimer = time.AfterFunc(runner.sessionDuration, func() { slog.Debug("timer expired, expiring to unload", "model", runner.model) runner.refMu.Lock() defer runner.refMu.Unlock() if runner.expireTimer != nil { runner.expireTimer.Stop() } s.expiredCh <- runner }) } else { slog.Debug("runner with non-zero duration has gone idle, resetting timer", "model", runner.model, "duration", runner.sessionDuration) runner.expireTimer.Reset(runner.sessionDuration) } } slog.Debug("after processing request finished event", "model", runner.model, "refCount", runner.refCount) runner.refMu.Unlock() case runner := <-s.expiredCh: slog.Debug("runner expired event received", "model", runner.model) runner.refMu.Lock() if runner.refCount > 0 { // Shouldn't happen, but safeguard to ensure no leaked runners slog.Debug("expired event with positive ref count, retrying", "model", runner.model, "refCount", runner.refCount) go func(runner *runnerRef) { // We can't unload yet, but want to as soon as the current request completes // So queue up another expired event time.Sleep(10 * time.Millisecond) s.expiredCh <- runner }(runner) runner.refMu.Unlock() continue } slog.Debug("got lock to unload", "model", runner.model) runner.unload() s.loadedMu.Lock() delete(s.loaded, runner.model) s.loadedMu.Unlock() slog.Debug("runner released", "model", runner.model) runner.refMu.Unlock() slog.Debug("sending an unloaded event", "model", runner.model) s.unloadedCh <- struct{}{} } } } // Complete the pending request and send the runner back to the requester // Wires up a finished event after the request context is completed // Updates session duration, and resets expiration timer func (pending *LlmRequest) useLoadedRunner(runner *runnerRef, finished chan *LlmRequest) { runner.refMu.Lock() defer runner.refMu.Unlock() runner.refCount++ if runner.expireTimer != nil { runner.expireTimer.Stop() runner.expireTimer = nil } runner.sessionDuration = pending.sessionDuration pending.successCh <- runner go func() { <-pending.ctx.Done() slog.Debug("context for request finished") finished <- pending }() } func (s *Scheduler) load(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) { llama, err := s.newServerFn(gpus, req.model.ModelPath, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts) if err != nil { // some older models are not compatible with newer versions of llama.cpp // show a generalized compatibility error until there is a better way to // check for model compatibility if errors.Is(llm.ErrUnsupportedFormat, err) || strings.Contains(err.Error(), "failed to load model") { err = fmt.Errorf("%v: this model may be incompatible with your version of Ollama. If you previously pulled this model, try updating it by running `ollama pull %s`", err, req.model.ShortName) } slog.Info("NewLlamaServer failed", "model", req.model.ModelPath, "error", err) req.errCh <- err return } runner := &runnerRef{} runner.model = req.model.ModelPath runner.adapters = req.model.AdapterPaths runner.projectors = req.model.ProjectorPaths runner.llama = llama runner.Options = &req.opts runner.sessionDuration = req.sessionDuration runner.gpus = gpus runner.estimatedVRAM = llama.EstimatedVRAM() runner.loading = true runner.refCount = 1 runner.refMu.Lock() s.loadedMu.Lock() s.loaded[req.model.ModelPath] = runner slog.Info("loaded runners", "count", len(s.loaded)) s.loadedMu.Unlock() go func() { defer runner.refMu.Unlock() if err = llama.WaitUntilRunning(req.ctx); err != nil { slog.Error("error loading llama server", "error", err) runner.refCount-- req.errCh <- err slog.Debug("triggering expiration for failed load", "model", runner.model) s.expiredCh <- runner return } slog.Debug("finished setting up runner", "model", req.model.ModelPath) runner.loading = false go func() { <-req.ctx.Done() slog.Debug("context for request finished") s.finishedReqCh <- req }() req.successCh <- runner }() } func (s *Scheduler) updateFreeSpace(allGpus gpu.GpuInfoList) { type predKey struct { Library string ID string } predMap := map[predKey]uint64{} // Sum up the total predicted usage per GPU for all runners s.loadedMu.Lock() for _, r := range s.loaded { r.refMu.Lock() gpuIDs := make([]string, 0, len(r.gpus)) if r.llama != nil { // TODO this should be broken down by GPU instead of assuming uniform spread estimatedVRAMPerGPU := r.llama.EstimatedVRAM() / uint64(len(r.gpus)) for _, gpu := range r.gpus { gpuIDs = append(gpuIDs, gpu.ID) } for _, gpu := range allGpus { if slices.Contains(gpuIDs, gpu.ID) { predMap[predKey{gpu.Library, gpu.ID}] += estimatedVRAMPerGPU } } } else { slog.Warn("unexpected nil runner reference, memory prediction may be incorrect") } r.refMu.Unlock() } s.loadedMu.Unlock() // Now that we've summed up all the GPU usage predictions across all the loaded runners, update the gpu list for i := range allGpus { if p, ok := predMap[predKey{allGpus[i].Library, allGpus[i].ID}]; ok { slog.Debug("gpu reported", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "available", format.HumanBytes2(allGpus[i].FreeMemory)) if p > allGpus[i].TotalMemory { // Shouldn't happen slog.Warn("predicted usage exceeds VRAM", "gpu", allGpus[i].ID, "totalMemory", allGpus[i].TotalMemory, "predicted", p) allGpus[i].FreeMemory = 0 } else if (allGpus[i].TotalMemory - p) < allGpus[i].FreeMemory { // predicted free is smaller than reported free, use it // TODO maybe we should just always trust our numbers, since cuda's free memory reporting is laggy // and we might unload models we didn't actually need to. The risk is if some other GPU intensive app is loaded // after we start our first runner, then we'll never acount for that, so picking the smallest free value seems prudent. allGpus[i].FreeMemory = allGpus[i].TotalMemory - p } slog.Info("updated VRAM", "gpu", allGpus[i].ID, "library", allGpus[i].Library, "total", format.HumanBytes2(allGpus[i].TotalMemory), "available", format.HumanBytes2(allGpus[i].FreeMemory)) } } } type runnerRef struct { refMu sync.Mutex // refCond sync.Cond // Signaled on transition from 1 -> 0 refCount refCount uint // prevent unloading if > 0 // unloading bool // set to true when we are trying to unload the runner llama llm.LlamaServer loading bool // True only during initial load, then false forever gpus gpu.GpuInfoList // Recorded at time of provisioning estimatedVRAM uint64 sessionDuration time.Duration expireTimer *time.Timer model string adapters []string projectors []string *api.Options } // The refMu must already be held when calling unload func (runner *runnerRef) unload() { if runner.llama != nil { runner.llama.Close() } runner.llama = nil runner.adapters = nil runner.projectors = nil runner.Options = nil runner.gpus = nil } func (runner *runnerRef) needsReload(ctx context.Context, req *LlmRequest) bool { slog.Debug("evaluating already loaded", "model", req.model.ModelPath) runner.refMu.Lock() defer runner.refMu.Unlock() timeout := 10 * time.Second if runner.loading { timeout = 2 * time.Minute // Initial load can take a long time for big models on slow systems... } // Don't reload runner if num_gpu=-1 was provided optsExisting := runner.Options.Runner optsNew := req.opts.Runner if optsNew.NumGPU < 0 { optsExisting.NumGPU = -1 optsNew.NumGPU = -1 } ctx, cancel := context.WithTimeout(ctx, timeout) defer cancel() if !reflect.DeepEqual(runner.adapters, req.model.AdapterPaths) || // have the adapters changed? !reflect.DeepEqual(runner.projectors, req.model.ProjectorPaths) || // have the projectors changed? !reflect.DeepEqual(optsExisting, optsNew) || // have the runner options changed? runner.llama.Ping(ctx) != nil { return true } return false } type ByDuration []*runnerRef func (a ByDuration) Len() int { return len(a) } func (a ByDuration) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a ByDuration) Less(i, j int) bool { // uint64 to turn negative time (never unload) to largest return uint64(a[i].sessionDuration) < uint64(a[j].sessionDuration) } // TODO - future consideration to pick runners based on size // type BySize []*runnerRef // func (a BySize) Len() int { return len(a) } // func (a BySize) Swap(i, j int) { a[i], a[j] = a[j], a[i] } // func (a BySize) Less(i, j int) bool { return a[i].estimatedVRAM < a[j].estimatedVRAM } // pickBestFitGPUs will try to find the optimal placement of the model in the available GPUs where the model fully fits // If the model can not be fit fully within the available GPU(s) nil is returned func pickBestFitGPUs(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList) gpu.GpuInfoList { var estimatedVRAM uint64 for _, gl := range gpus.ByLibrary() { var ok bool sgl := append(make(gpu.GpuInfoList, 0, len(gl)), gl...) // TODO - potentially sort by performance capability, existing models loaded, etc. // Note: at present, this will favor more VRAM over faster GPU speed in mixed setups sort.Sort(sort.Reverse(gpu.ByFreeMemory(sgl))) // First attempt to fit the model into a single GPU for _, g := range sgl { if ok, estimatedVRAM = llm.PredictServerFit([]gpu.GpuInfo{g}, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { slog.Debug("new model will fit in available VRAM in single GPU, loading", "model", req.model.ModelPath, "gpu", g.ID, "available", g.FreeMemory, "required", format.HumanBytes2(estimatedVRAM)) return []gpu.GpuInfo{g} } } // TODO future refinements // - if multiple Libraries, see if any single GPU in any Library will fit // - try subsets of GPUs instead of just falling back to 1 or all in a family // Now try all the GPUs if ok, estimatedVRAM = llm.PredictServerFit(gl, ggml, req.model.AdapterPaths, req.model.ProjectorPaths, req.opts); ok { slog.Debug("new model will fit in available VRAM, loading", "model", req.model.ModelPath, "library", gl[0].Library, "required", format.HumanBytes2(estimatedVRAM)) return gl } } return nil } // findRunnerToUnload finds a runner to unload to make room for a new model func (s *Scheduler) findRunnerToUnload(req *LlmRequest) *runnerRef { s.loadedMu.Lock() runnerList := make([]*runnerRef, 0, len(s.loaded)) for _, r := range s.loaded { runnerList = append(runnerList, r) } s.loadedMu.Unlock() // In the future we can enhance the algorithm to be smarter about picking the optimal runner to unload // e.g., if we have multiple options, will one make room for the request? sort.Sort(ByDuration(runnerList)) // First try to find a runner that's already idle for _, runner := range runnerList { runner.refMu.Lock() rc := runner.refCount runner.refMu.Unlock() if rc == 0 { slog.Debug("found an idle runner to unload") return runner } } // None appear idle, just wait for the one with the shortest duration slog.Debug("no idle runners, picking the shortest duration", "count", len(runnerList)) return runnerList[0] } func (s *Scheduler) unloadAllRunners() { s.loadedMu.Lock() defer s.loadedMu.Unlock() for model, runner := range s.loaded { if runner.llama != nil { slog.Debug("shutting down runner", "model", model) runner.llama.Close() } } }