/** * llama.cpp - git 5bf2a2771886ee86137e01dbc7492f78fb392066 * * MIT License * * Copyright (c) 2023 Georgi Gerganov * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ // An interface allowing to compute ggml_cgraph with Metal // // This is a fully functional interface that extends ggml with GPU support for Apple devices. // A similar interface can be created for other GPU backends (e.g. Vulkan, CUDA, OpenCL, etc.) // // How it works? // // As long as your program can create and evaluate a ggml_cgraph on the CPU, you can use this // interface to evaluate the same graph on the GPU. Instead of using ggml_graph_compute(), you // use ggml_metal_graph_compute() (or ggml_vulkan_graph_compute(), etc.) // // You only need to make sure that all memory buffers that you used during the graph creation // are mapped to the device memory with the ggml_metal_add_buffer() function. This mapping is // used during the graph evaluation to determine the arguments of the compute kernels. // // Synchronization between device and host memory (for example for input and output tensors) // is done with the ggml_metal_set_tensor() and ggml_metal_get_tensor() functions. // #pragma once #include #include // max memory buffers that can be mapped to the device #define GGML_METAL_MAX_BUFFERS 16 struct ggml_tensor; struct ggml_cgraph; #ifdef __cplusplus extern "C" { #endif struct ggml_metal_context; // number of command buffers to use struct ggml_metal_context * ggml_metal_init(int n_cb); void ggml_metal_free(struct ggml_metal_context * ctx); // set the number of command buffers to use void ggml_metal_set_n_cb(struct ggml_metal_context * ctx, int n_cb); // creates a mapping between a host memory buffer and a device memory buffer // - make sure to map all buffers used in the graph before calling ggml_metal_graph_compute // - the mapping is used during computation to determine the arguments of the compute kernels // - you don't need to keep the host memory buffer allocated as it is never accessed by Metal // - max_size specifies the maximum size of a tensor and is used to create shared views such // that it is guaranteed that the tensor will fit in at least one of the views // bool ggml_metal_add_buffer( struct ggml_metal_context * ctx, const char * name, void * data, size_t size, size_t max_size); // set data from host memory into the device void ggml_metal_set_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); // get data from the device into host memory void ggml_metal_get_tensor(struct ggml_metal_context * ctx, struct ggml_tensor * t); // same as ggml_graph_compute but uses Metal // creates gf->n_threads command buffers in parallel void ggml_metal_graph_compute(struct ggml_metal_context * ctx, struct ggml_cgraph * gf); #ifdef __cplusplus } #endif