package llm import ( "context" "fmt" "log" "os" "runtime" "github.com/pbnjay/memory" "github.com/jmorganca/ollama/api" "github.com/jmorganca/ollama/format" ) type LLM interface { Predict(context.Context, PredictRequest, func(PredictResponse)) error Embedding(context.Context, string) ([]float64, error) Encode(context.Context, string) ([]int, error) Decode(context.Context, []int) (string, error) SetOptions(api.Options) Close() Ping(context.Context) error } func New(workDir, model string, adapters []string, opts api.Options) (LLM, error) { if _, err := os.Stat(model); err != nil { return nil, err } f, err := os.Open(model) if err != nil { return nil, err } defer f.Close() ggml, err := DecodeGGML(f) if err != nil { return nil, err } if runtime.GOOS == "darwin" { switch ggml.FileType() { case "F32", "Q5_0", "Q5_1", "Q8_0": if ggml.Name() != "gguf" && opts.NumGPU != 0 { // GGML Q8_0 do not support Metal API and will // cause the runner to segmentation fault so disable GPU log.Printf("WARNING: GPU disabled for F32, Q5_0, Q5_1, and Q8_0") opts.NumGPU = 0 } } var requiredMemory int64 var f16Multiplier int64 = 2 switch ggml.ModelType() { case "3B", "7B": requiredMemory = 8 * format.GigaByte case "13B": requiredMemory = 16 * format.GigaByte case "30B", "34B", "40B": requiredMemory = 32 * format.GigaByte case "65B", "70B": requiredMemory = 64 * format.GigaByte case "180B": requiredMemory = 128 * format.GigaByte f16Multiplier = 4 } systemMemory := int64(memory.TotalMemory()) if ggml.FileType() == "F16" && requiredMemory*f16Multiplier > systemMemory { return nil, fmt.Errorf("F16 model requires at least %s of total memory", format.HumanBytes(requiredMemory)) } else if requiredMemory > systemMemory { return nil, fmt.Errorf("model requires at least %s of total memory", format.HumanBytes(requiredMemory)) } } switch ggml.Name() { case "gguf": // TODO: gguf will load these options automatically from the model binary opts.NumGQA = 0 opts.RopeFrequencyBase = 0.0 opts.RopeFrequencyScale = 0.0 return newLlama(model, adapters, chooseRunners(workDir, "gguf"), ggml.NumLayers(), opts) case "ggml", "ggmf", "ggjt", "ggla": return newLlama(model, adapters, chooseRunners(workDir, "ggml"), ggml.NumLayers(), opts) default: return nil, fmt.Errorf("unknown ggml type: %s", ggml.ModelFamily()) } }