/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "tsembd.cuh" static __global__ void timestep_embedding_f32(const float * timesteps, float * dst, const int nb1, const int dim, const int max_period) { // blockIDx.y: idx of timesteps->ne[0] // blockIDx.x: idx of ((dim + 1) / 2) / BLOCK_SIZE int i = blockIdx.y; int j = threadIdx.x + blockIdx.x * blockDim.x; float * embed_data = (float *)((char *)dst + i*nb1); if (dim % 2 != 0 && j == ((dim + 1) / 2)) { embed_data[dim] = 0.f; } int half = dim / 2; if (j >= half) { return; } float timestep = timesteps[i]; float freq = (float)expf(-logf(max_period) * j / half); float arg = timestep * freq; embed_data[j] = cosf(arg); embed_data[j + half] = sinf(arg); } static void timestep_embedding_f32_cuda(const float * x, float * dst, const int ne00, const int nb1, const int dim, const int max_period, cudaStream_t stream) { int half_ceil = (dim + 1) / 2; int num_blocks = (half_ceil + CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE - 1) / CUDA_TIMESTEP_EMBEDDING_BLOCK_SIZE; dim3 gridDim(num_blocks, ne00, 1); timestep_embedding_f32<<>>(x, dst, nb1, dim, max_period); } void ggml_cuda_op_timestep_embedding(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT(dst->type == GGML_TYPE_F32); const int dim = dst->op_params[0]; const int max_period = dst->op_params[1]; timestep_embedding_f32_cuda(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream); }