/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "conv-transpose-1d.cuh" static __global__ void conv_transpose_1d_kernel( const int s0, const int p0, const int d0, const int output_size, const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3, const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3, const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3, const float * src0, const float * src1, float * dst) { int global_index = threadIdx.x + blockIdx.x * blockDim.x; if (global_index >= output_size) { return; } int out_index = global_index / dst_ne0; float accumulator = 0; for (int c = 0; c < src0_ne2; c++) { int idx = global_index % dst_ne0; int kernel_offset = (src0_ne0 * src0_ne1 * c) + (out_index * src0_ne0); int input_offset = src1_ne0 * c; for (int i = 0; i < src1_ne0; i++) { if (!(idx >= i*s0 && idx < i*s0 + src0_ne0)) { continue; } int weight_idx = idx - i*s0; float kernel_weight = src0[kernel_offset + weight_idx]; float input_value = src1[input_offset+i]; accumulator += kernel_weight * input_value; } } dst[global_index] = accumulator; } static void conv_transpose_1d_f32_f32_cuda( const int s0, const int p0, const int d0, const int output_size, const int src0_ne0, const int src0_ne1, const int src0_ne2, const int src0_ne3, const int src1_ne0, const int src1_ne1, const int src1_ne2, const int src1_ne3, const int dst_ne0, const int dst_ne1, const int dst_ne2, const int dst_ne3, const float * src0, const float * src1, float * dst, cudaStream_t stream) { const int num_blocks = (output_size + CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE - 1) / CUDA_CONV_TRANPOSE_1D_BLOCK_SIZE; conv_transpose_1d_kernel<<>>( s0,p0,d0,output_size, src0_ne0, src0_ne1, src0_ne2, src0_ne3, src1_ne0, src1_ne1, src1_ne2, src1_ne3, dst_ne0, dst_ne1, dst_ne2, dst_ne3, src0,src1, dst); } void ggml_cuda_op_conv_transpose_1d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; const ggml_tensor * src1 = dst->src[1]; const float * src1_d = (const float *)src1->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); const int32_t * opts = (const int32_t *)dst->op_params; const int s0 = opts[0]; const int p0 = 0;//opts[3]; const int d0 = 1;//opts[4]; const int64_t kernel_size = ggml_nelements(src0); const int64_t input_size = ggml_nelements(src1); const int64_t output_size = ggml_nelements(dst); conv_transpose_1d_f32_f32_cuda(s0, p0, d0, output_size, src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3], src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3], dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], src0_d, src1_d, dst_d, stream); }