/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "unary.cuh" static __global__ void neg_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = -x[i]; } static __global__ void step_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] > 0.0f; } static __global__ void gelu_f32(const float * x, float * dst, const int k) { const float GELU_COEF_A = 0.044715f; const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f; const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } float xi = x[i]; dst[i] = 0.5f*xi*(1.0f + tanhf(SQRT_2_OVER_PI*xi*(1.0f + GELU_COEF_A*xi*xi))); } static __global__ void gelu_quick_f32(const float * x, float * dst, int k) { const float GELU_QUICK_COEF = -1.702f; const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * (1.0f / (1.0f + expf(GELU_QUICK_COEF * x[i]))); } static __global__ void silu_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] / (1.0f + expf(-x[i])); } static __global__ void tanh_f32(const float * x, float * dst, int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = tanhf(x[i]); } static __global__ void relu_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fmaxf(x[i], 0); } static __global__ void sigmoid_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = 1.0f / (1.0f + expf(-x[i])); } static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } static __global__ void hardswish_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } static __global__ void exp_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = expf(x[i]); } static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = fmaxf(x[i], 0) + fminf(x[i], 0.0f) * negative_slope; } static __global__ void sqr_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = x[i] * x[i]; } static __global__ void sqrt_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = sqrtf(x[i]); } static __global__ void sin_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = sinf(x[i]); } static __global__ void cos_f32(const float * x, float * dst, const int k) { const int i = blockDim.x*blockIdx.x + threadIdx.x; if (i >= k) { return; } dst[i] = cosf(x[i]); } static void neg_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_NEG_BLOCK_SIZE - 1) / CUDA_NEG_BLOCK_SIZE; neg_f32<<>>(x, dst, k); } static void step_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_STEP_BLOCK_SIZE - 1) / CUDA_STEP_BLOCK_SIZE; step_f32<<>>(x, dst, k); } static void gelu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; gelu_f32<<>>(x, dst, k); } static void gelu_quick_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_GELU_BLOCK_SIZE - 1) / CUDA_GELU_BLOCK_SIZE; gelu_quick_f32<<>>(x, dst, k); } static void silu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SILU_BLOCK_SIZE - 1) / CUDA_SILU_BLOCK_SIZE; silu_f32<<>>(x, dst, k); } static void tanh_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_TANH_BLOCK_SIZE - 1) / CUDA_TANH_BLOCK_SIZE; tanh_f32<<>>(x, dst, k); } static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; relu_f32<<>>(x, dst, k); } static void sigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SIGMOID_BLOCK_SIZE - 1) / CUDA_SIGMOID_BLOCK_SIZE; sigmoid_f32<<>>(x, dst, k); } static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE; hardsigmoid_f32<<>>(x, dst, k); } static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE; hardswish_f32<<>>(x, dst, k); } static void exp_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_EXP_BLOCK_SIZE - 1) / CUDA_EXP_BLOCK_SIZE; exp_f32<<>>(x, dst, k); } static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) { const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE; leaky_relu_f32<<>>(x, dst, k, negative_slope); } static void sqr_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SQR_BLOCK_SIZE - 1) / CUDA_SQR_BLOCK_SIZE; sqr_f32<<>>(x, dst, k); } static void sqrt_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SQRT_BLOCK_SIZE - 1) / CUDA_SQRT_BLOCK_SIZE; sqrt_f32<<>>(x, dst, k); } static void sin_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_SIN_BLOCK_SIZE - 1) / CUDA_SIN_BLOCK_SIZE; sin_f32<<>>(x, dst, k); } static void cos_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) { const int num_blocks = (k + CUDA_COS_BLOCK_SIZE - 1) / CUDA_COS_BLOCK_SIZE; cos_f32<<>>(x, dst, k); } void ggml_cuda_op_neg(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); neg_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_step(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); step_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_gelu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); gelu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_silu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); silu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_gelu_quick(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); gelu_quick_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_tanh(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); tanh_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_sigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_hardsigmoid(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); hardsigmoid_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_hardswish(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); hardswish_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_exp(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); exp_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_leaky_relu(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); float negative_slope; memcpy(&negative_slope, dst->op_params, sizeof(float)); leaky_relu_f32_cuda(src0_d, dst_d, ggml_nelements(src0), negative_slope, stream); } void ggml_cuda_op_sqr(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sqr_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_sqrt(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sqrt_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_sin(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); sin_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); } void ggml_cuda_op_cos(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); cos_f32_cuda(src0_d, dst_d, ggml_nelements(src0), stream); }