/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "pool2d.cuh" template static __global__ void pool2d_nchw_kernel( const int ih, const int iw, const int oh, const int ow, const int kh, const int kw, const int sh, const int sw, const int ph, const int pw, const int parallel_elements, const Ti* src, To* dst, const enum ggml_op_pool op) { int idx = threadIdx.x + blockIdx.x * blockDim.x; if (idx >= parallel_elements) { return; } const int I_HW = ih * iw; const int O_HW = oh * ow; const int nc = idx / O_HW; const int cur_oh = idx % O_HW / ow; const int cur_ow = idx % O_HW % ow; const Ti* i_ptr = src + nc * I_HW; To* o_ptr = dst + nc * O_HW; const int start_h = cur_oh * sh - ph; const int bh = max(0, start_h); const int eh = min(ih, start_h + kh); const int start_w = cur_ow * sw - pw; const int bw = max(0, start_w); const int ew = min(iw, start_w + kw); const To scale = 1. / (kh * kw); To res = 0; switch (op) { case GGML_OP_POOL_AVG: res = 0; break; case GGML_OP_POOL_MAX: res = -FLT_MAX; break; default: assert(false); } for (int i = bh; i < eh; i += 1) { for (int j = bw; j < ew; j += 1) { #if __CUDA_ARCH__ >= 350 Ti cur = __ldg(i_ptr + i * iw + j); #else Ti cur = i_ptr[i * iw + j]; #endif switch (op) { case GGML_OP_POOL_AVG: res += cur * scale; break; case GGML_OP_POOL_MAX: res = max(res, (To)cur); break; default: assert(false); } } } o_ptr[cur_oh * ow + cur_ow] = res; } static void pool2d_nchw_kernel_f32_f32_cuda( const int ih, const int iw, const int oh, const int ow, const int kh, const int kw, const int sh, const int sw, const int ph, const int pw, const int parallel_elements, const float * src, float * dst, const enum ggml_op_pool op, cudaStream_t stream) { const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE; dim3 block_nums(num_blocks); pool2d_nchw_kernel<<>>(ih, iw, oh, ow, kh, kw, sh, sw, ph, pw, parallel_elements, src, dst, op); } void ggml_cuda_op_pool2d(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const float * src0_d = (const float *)src0->data; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(src0->type == GGML_TYPE_F32); GGML_ASSERT( dst->type == GGML_TYPE_F32); const int32_t * opts = (const int32_t *)dst->op_params; enum ggml_op_pool op = static_cast(opts[0]); const int k0 = opts[1]; const int k1 = opts[2]; const int s0 = opts[3]; const int s1 = opts[4]; const int p0 = opts[5]; const int p1 = opts[6]; const int64_t IH = src0->ne[1]; const int64_t IW = src0->ne[0]; const int64_t N = dst->ne[3]; const int64_t OC = dst->ne[2]; const int64_t OH = dst->ne[1]; const int64_t OW = dst->ne[0]; const int parallel_elements = N * OC * OH * OW; pool2d_nchw_kernel_f32_f32_cuda(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_d, dst_d, op, stream); }