/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "llama-vocab.h" #include "unicode.h" #include #include #include #include #include #include #include #include #include // // helpers // LLAMA_ATTRIBUTE_FORMAT(1, 2) static std::string format(const char * fmt, ...) { va_list ap; va_list ap2; va_start(ap, fmt); va_copy(ap2, ap); int size = vsnprintf(NULL, 0, fmt, ap); GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT std::vector buf(size + 1); int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2); GGML_ASSERT(size2 == size); va_end(ap2); va_end(ap); return std::string(buf.data(), size); } struct naive_trie { naive_trie() : has_value(false), value(0) { } void insert(const char * key, size_t len, int32_t value = 0) { if (len == 0) { this->has_value = true; this->value = value; return; } char c = key[0]; auto res = children.find(c); if (res != children.end()) { res->second.insert(key + 1, len - 1, value); } else { auto res = children.insert(std::make_pair(c, naive_trie())); res.first->second.insert(key + 1, len - 1, value); } } std::pair get_longest_prefix(const char * key, size_t len, size_t offset = 0) { if (len == 0 || offset == len) { return std::make_pair(key, offset); } char c = key[offset]; auto res = children.find(c); if (res != children.end()) { return res->second.get_longest_prefix(key, len, offset + 1); } return std::make_pair(key, offset); } const struct naive_trie * traverse(const char c) const { auto res = children.find(c); if (res != children.end()) { return &res->second; } return NULL; } std::map children; bool has_value; llama_token value; }; // // impl // int llama_vocab::find_bpe_rank(const std::string & token_left, const std::string & token_right) const { GGML_ASSERT(token_left.find(' ') == std::string::npos); GGML_ASSERT(token_left.find('\n') == std::string::npos); GGML_ASSERT(token_right.find(' ') == std::string::npos); GGML_ASSERT(token_right.find('\n') == std::string::npos); auto it = bpe_ranks.find(std::make_pair(token_left, token_right)); if (it == bpe_ranks.end()) { return -1; } return it->second; } static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) { return vocab.type; } static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL; } static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN; } static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL; } static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE; } static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED; } static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNUSED; } static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) { GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); GGML_ASSERT(llama_is_byte_token(vocab, id)); const auto & token_data = vocab.id_to_token.at(id); switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: case LLAMA_VOCAB_TYPE_UGM: { auto buf = token_data.text.substr(3, 2); return strtol(buf.c_str(), NULL, 16); } case LLAMA_VOCAB_TYPE_BPE: { GGML_ABORT("fatal error"); //return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT? } case LLAMA_VOCAB_TYPE_WPM: { GGML_ABORT("fatal error"); } default: GGML_ABORT("fatal error"); } } static void llama_escape_whitespace(std::string & text) { replace_all(text, " ", "\xe2\x96\x81"); } static void llama_unescape_whitespace(std::string & word) { replace_all(word, "\xe2\x96\x81", " "); } struct llm_symbol { using index = int; index prev; index next; const char * text; size_t n; }; static_assert(std::is_trivially_copyable::value, "llm_symbol is not trivially copyable"); // // SPM tokenizer // original implementation: // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4 // struct llm_bigram_spm { struct comparator { bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) { return (l.score < r.score) || (l.score == r.score && l.left > r.left); } }; using queue_storage = std::vector; using queue = std::priority_queue; llm_symbol::index left; llm_symbol::index right; float score; size_t size; }; struct llm_tokenizer_spm { llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) { // split string into utf8 chars int index = 0; size_t offs = 0; while (offs < text.size()) { llm_symbol sym; size_t len = unicode_len_utf8(text[offs]); sym.text = text.c_str() + offs; sym.n = std::min(len, text.size() - offs); offs += sym.n; sym.prev = index - 1; sym.next = offs == text.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } // seed the work queue with all possible 2-character tokens. for (size_t i = 1; i < symbols.size(); ++i) { try_add_bigram(i - 1, i); } // keep substituting the highest frequency pairs for as long as we can. while (!work_queue.empty()) { auto bigram = work_queue.top(); work_queue.pop(); auto & left_sym = symbols[bigram.left]; auto & right_sym = symbols[bigram.right]; // if one of the symbols already got merged, skip it. if (left_sym.n == 0 || right_sym.n == 0 || left_sym.n + right_sym.n != bigram.size) { continue; } // merge the right sym into the left one left_sym.n += right_sym.n; right_sym.n = 0; //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size); // remove the right sym from the chain left_sym.next = right_sym.next; if (right_sym.next >= 0) { symbols[right_sym.next].prev = bigram.left; } // find more substitutions try_add_bigram(left_sym.prev, bigram.left); try_add_bigram(bigram.left, left_sym.next); } for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; resegment(symbol, output); } } private: void resegment(llm_symbol & symbol, std::vector & output) { auto text = std::string(symbol.text, symbol.n); auto token = vocab.token_to_id.find(text); // Do we need to support is_unused? if (token != vocab.token_to_id.end()) { output.push_back((*token).second); return; } const auto p = rev_merge.find(text); if (p == rev_merge.end()) { // output any symbols that did not form tokens as bytes. output.reserve(output.size() + symbol.n); for (int j = 0; j < (int)symbol.n; ++j) { llama_vocab::id token_id = llama_byte_to_token_impl(vocab, symbol.text[j]); output.push_back(token_id); } return; } resegment(symbols[p->second.first], output); resegment(symbols[p->second.second], output); } void try_add_bigram(int left, int right) { if (left == -1 || right == -1) { return; } const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n); auto token = vocab.token_to_id.find(text); if (token == vocab.token_to_id.end()) { return; } if (static_cast((*token).second) >= vocab.id_to_token.size()) { return; } const auto & tok_data = vocab.id_to_token[(*token).second]; llm_bigram_spm bigram; bigram.left = left; bigram.right = right; bigram.score = tok_data.score; bigram.size = text.size(); work_queue.push(bigram); // Do we need to support is_unused? rev_merge[text] = std::make_pair(left, right); } const llama_vocab & vocab; std::vector symbols; llm_bigram_spm::queue work_queue; std::map> rev_merge; }; // // BPE tokenizer // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License] // tried to simplify unicode stuff, so most likely does not work 100% correctly! // // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused template, typename Compare = std::less> class llama_priority_queue : public std::priority_queue { public: using std::priority_queue::priority_queue; T pop_move() { T item = std::move(this->c.front()); std::pop_heap(this->c.begin(), this->c.end(), this->comp); this->c.pop_back(); return item; } void pop() = delete; }; struct llm_bigram_bpe { struct comparator { bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const { return l.rank > r.rank || (l.rank == r.rank && l.left > r.left); } }; using queue_storage = std::vector; using queue = llama_priority_queue; llm_symbol::index left; llm_symbol::index right; std::string text; int rank; size_t size; }; struct llm_tokenizer_bpe { llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) { GGML_ASSERT(vocab.type == LLAMA_VOCAB_TYPE_BPE); switch (vocab.type_pre) { case LLAMA_VOCAB_PRE_TYPE_LLAMA3: regex_exprs = { // original regex from tokenizer.json //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989 "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; case LLAMA_VOCAB_PRE_TYPE_DBRX: case LLAMA_VOCAB_PRE_TYPE_SMAUG: regex_exprs = { // same as llama3 "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM: regex_exprs = { "[\r\n]", "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+", "\\s?[!-/:-~!-/:-~‘-‟ -。]+", "\\s+$", "[一-龥ࠀ-一가-퟿]+", "\\p{N}+", }; break; case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER: regex_exprs = { "[\r\n]", "\\s?\\p{L}+", "\\s?\\p{P}+", "[一-龥ࠀ-一가-퟿]+", "\\p{N}", }; break; case LLAMA_VOCAB_PRE_TYPE_FALCON: regex_exprs = { "[\\p{P}\\$\\+<=>\\^~\\|`]+", "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", "[0-9][0-9][0-9]", }; break; case LLAMA_VOCAB_PRE_TYPE_STARCODER: case LLAMA_VOCAB_PRE_TYPE_REFACT: case LLAMA_VOCAB_PRE_TYPE_COMMAND_R: case LLAMA_VOCAB_PRE_TYPE_SMOLLM: case LLAMA_VOCAB_PRE_TYPE_CODESHELL: case LLAMA_VOCAB_PRE_TYPE_EXAONE: regex_exprs = { "\\p{N}", "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", }; break; case LLAMA_VOCAB_PRE_TYPE_GPT2: case LLAMA_VOCAB_PRE_TYPE_MPT: case LLAMA_VOCAB_PRE_TYPE_OLMO: case LLAMA_VOCAB_PRE_TYPE_JAIS: regex_exprs = { "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", }; break; case LLAMA_VOCAB_PRE_TYPE_STABLELM2: case LLAMA_VOCAB_PRE_TYPE_QWEN2: regex_exprs = { // original regex from tokenizer.json // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; case LLAMA_VOCAB_PRE_TYPE_PORO: case LLAMA_VOCAB_PRE_TYPE_BLOOM: case LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH: regex_exprs = { " ?[^(\\s|.,!?…。,、।۔،)]+", }; break; case LLAMA_VOCAB_PRE_TYPE_CHATGLM4: regex_exprs = { "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; case LLAMA_VOCAB_PRE_TYPE_VIKING: regex_exprs = { " ?[^(\\s|.,!?…。,、।۔،)]+", "\\p{N}", }; break; case LLAMA_VOCAB_PRE_TYPE_TEKKEN: // original regex from tokenizer.json // "[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]*[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]+|[^\\r\\n\\p{L}\\p{N}]?[\\p{Lu}\\p{Lt}\\p{Lm}\\p{Lo}\\p{M}]+[\\p{Ll}\\p{Lm}\\p{Lo}\\p{M}]*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+" regex_exprs = { "[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))*((?=[\\p{L}])([^A-Z]))+|[^\\r\\n\\p{L}\\p{N}]?((?=[\\p{L}])([^a-z]))+((?=[\\p{L}])([^A-Z]))*|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n/]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+", }; break; default: // default regex for BPE tokenization pre-processing regex_exprs = { "[\\p{P}\\$\\+<=>\\^~\\|]+", "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)", "\\p{N}+", "[0-9][0-9][0-9]", }; break; } } void append(const llama_vocab::id token_id, std::vector & output) const { output.push_back(token_id); } bool append_bos(std::vector & output) const { if (vocab.tokenizer_add_bos) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); return true; } return false; } bool append_eos(std::vector & output) const { if (vocab.tokenizer_add_eos) { GGML_ASSERT(vocab.special_eos_id != -1); output.push_back(vocab.special_eos_id); return true; } return false; } void check_double_bos_eos(const std::vector & output) const { if (vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { LLAMA_LOG_WARN( "%s: Added a BOS token to the prompt as specified by the model but the prompt " "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " "Are you sure this is what you want?\n", __FUNCTION__); } if (vocab.tokenizer_add_eos && output.size() >= 2 && *(output.end()-2) == vocab.special_eos_id) { LLAMA_LOG_WARN( "%s: Added a EOS token to the prompt as specified by the model but the prompt " "also ends with a EOS token. So now the final prompt ends with 2 EOS tokens. " "Are you sure this is what you want?\n", __FUNCTION__); } } void tokenize(const std::string & text, std::vector & output) { int final_prev_index = -1; const auto word_collection = unicode_regex_split(text, regex_exprs); symbols_final.clear(); for (auto & word : word_collection) { work_queue = llm_bigram_bpe::queue(); symbols.clear(); int index = 0; size_t offset = 0; if (vocab.tokenizer_ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) { symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()}); offset = word.size(); } while (offset < word.size()) { llm_symbol sym; size_t char_len = std::min(word.size() - offset, (size_t) unicode_len_utf8(word[offset])); sym.text = word.c_str() + offset; sym.n = char_len; offset += sym.n; sym.prev = index - 1; sym.next = offset == word.size() ? -1 : index + 1; index++; symbols.emplace_back(sym); } for (size_t i = 1; i < symbols.size(); ++i) { add_new_bigram(i - 1, i); } // build token(s) while (!work_queue.empty()) { auto bigram = work_queue.pop_move(); auto & left_symbol = symbols[bigram.left]; auto & right_symbol = symbols[bigram.right]; if (left_symbol.n == 0 || right_symbol.n == 0) { continue; } std::string left_token = std::string(left_symbol.text, left_symbol.n); std::string right_token = std::string(right_symbol.text, right_symbol.n); if (left_token + right_token != bigram.text) { continue; // Skip this bigram if it's outdated } // merge the right sym into the left one left_symbol.n += right_symbol.n; right_symbol.n = 0; // remove the right sym from the chain left_symbol.next = right_symbol.next; if (right_symbol.next >= 0) { symbols[right_symbol.next].prev = bigram.left; } add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol } // add the finished tokens to the final list keeping correct order for next and prev for (auto & sym : symbols) { if (sym.n > 0) { sym.prev = final_prev_index; sym.next = -1; if (final_prev_index != -1) { symbols_final[final_prev_index].next = symbols_final.size(); } symbols_final.emplace_back(sym); final_prev_index = symbols_final.size() - 1; } } } symbols = symbols_final; if (!symbols.empty()) { for (int i = 0; i != -1; i = symbols[i].next) { auto & symbol = symbols[i]; if (symbol.n == 0) { continue; } const std::string str = std::string(symbol.text, symbol.n); const auto token = vocab.token_to_id.find(str); if (token == vocab.token_to_id.end()) { for (auto j = str.begin(); j != str.end(); ++j) { std::string byte_str(1, *j); auto token_multibyte = vocab.token_to_id.find(byte_str); if (token_multibyte != vocab.token_to_id.end()) { output.push_back(token_multibyte->second); } } } else { output.push_back((*token).second); } } } } private: void add_new_bigram(int left, int right) { if (left == -1 || right == -1) { return; } std::string left_token = std::string(symbols[left].text, symbols[left].n); std::string right_token = std::string(symbols[right].text, symbols[right].n); int rank_found = -1; rank_found = vocab.find_bpe_rank(left_token, right_token); if (rank_found < 0) { return; } llm_bigram_bpe bigram; bigram.left = left; bigram.right = right; bigram.text = left_token + right_token; bigram.size = left_token.size() + right_token.size(); bigram.rank = rank_found; work_queue.push(bigram); } const llama_vocab & vocab; std::vector regex_exprs; std::vector symbols; std::vector symbols_final; llm_bigram_bpe::queue work_queue; }; // // WPM tokenizer // struct llm_tokenizer_wpm { llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {} void tokenize(const std::string & text, std::vector & output) const { const auto & token_map = vocab.token_to_id; // normalize and split by whitespace std::vector words = preprocess(text); // bos token prepended already // find the longest tokens that form the words for (const std::string & word : words) { // skip empty words if (word.size() == 0) { continue; } // prepend phantom space const std::string word1 = "\xe2\x96\x81" + word; const int n = word1.size(); const size_t current_tokens = output.size(); // we're at the start of a new word // move through character position in word for (int i = 0; i < n; ++i) { // loop through possible match length bool match = false; for (int j = std::min(n, i + vocab.max_token_len + 1); j > i; j--) { auto it = token_map.find(word1.substr(i, j - i)); if (it != token_map.end()) { output.push_back(it->second); match = true; i = j - 1; break; } } if (!match) { // discard all output.resize(current_tokens); break; // and discard next tokens } } // we didn't find any matches for this word if (current_tokens == output.size()) { output.push_back(vocab.special_unk_id); } } } // TODO: reduce string copies by using cpts_offs array std::vector preprocess(const std::string & text) const { const std::vector cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text)); std::vector words(1, ""); for (const uint32_t cpt : cpts_nfd) { const auto flags = unicode_cpt_flags(cpt); if (flags.is_whitespace) { if (words.back().size()) { // finish previous word if any words.emplace_back(); } continue; } assert (!flags.is_separator); if (cpt == 0 || cpt == 0xFFFD || flags.is_control) { continue; } const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt)); if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) { if (words.back().size()) { // finish previous word if any words.emplace_back(); } words.back() = s; // single char word words.emplace_back(); // start a new word } else { words.back() += s; // append char to word } } if (!words.back().size()) { words.pop_back(); } return words; } static bool is_chinese_char(uint32_t cpt) { return (cpt >= 0x04E00 && cpt <= 0x09FFF) || (cpt >= 0x03400 && cpt <= 0x04DBF) || (cpt >= 0x20000 && cpt <= 0x2A6DF) || (cpt >= 0x2A700 && cpt <= 0x2B73F) || (cpt >= 0x2B740 && cpt <= 0x2B81F) || (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920 (cpt >= 0x0F900 && cpt <= 0x0FAFF) || (cpt >= 0x2F800 && cpt <= 0x2FA1F); //(cpt >= 0x3000 && cpt <= 0x303F) || //(cpt >= 0xFF00 && cpt <= 0xFFEF); } const llama_vocab & vocab; }; // // UGM tokenizer // struct llm_tokenizer_ugm { llm_tokenizer_ugm(const llama_vocab & vocab) : vocab(vocab) { if (vocab.precompiled_charsmap.size() > 0) { size_t charsmap_offset = 0; // First four bytes of precompiled_charsmap contains length of binary // blob containing XOR-compressed compact double array (XCDA) entries uint32_t xcda_blob_size = *(const uint32_t *) &vocab.precompiled_charsmap[0]; charsmap_offset += sizeof(xcda_blob_size); if (xcda_blob_size + charsmap_offset >= vocab.precompiled_charsmap.size()) { throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); } // Next xcda_blob_size bytes contain entries of XOR-compressed compact // double array (XCDA). Each entry is bit-packed into a 32-bit integer. xcda_array = (const uint32_t *) &vocab.precompiled_charsmap[charsmap_offset]; xcda_array_size = xcda_blob_size / sizeof(uint32_t); charsmap_offset += xcda_blob_size; // Remaining bytes of precompiled charsmap contain null-terminated // replacement strings for prefixes matched by the XCDA. prefix_replacements = &vocab.precompiled_charsmap[charsmap_offset]; prefix_replacements_size = vocab.precompiled_charsmap.size() - charsmap_offset; } for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { const auto &token_data = vocab.id_to_token[id]; if (llama_is_normal_token(vocab, id)) { min_score = std::min(min_score, token_data.score); max_score = std::max(max_score, token_data.score); } if (llama_is_normal_token(vocab, id) || llama_is_user_defined_token(vocab, id) || llama_is_unused_token(vocab, id)) { token_matcher.insert(token_data.text.data(), token_data.text.size(), id); } if (llama_is_user_defined_token(vocab, id)) { user_defined_token_matcher.insert(token_data.text.data(), token_data.text.size()); } } unknown_token_score = min_score - unknown_token_score_penalty; } /* This implementation is based on SentencePiece optimized Viterbi algorithm for * unigram language models. The general idea is to: * - move along the input sequence in steps of one UTF code point, * - at each step find all possible tokenizations of the prefix by * traversing the tokens trie, * - for each tokenization store the best one so far (by higher score) * - use the position in sequence after given token as an index to store * results * - if there was no valid tokenization of the current UTF code point * then use unknown token with additional score penalty * After processing the whole sequence we backtrack from the end to get * the best tokenization. */ void tokenize(const std::string & text, std::vector & output) { // get current size of output (for reversal later) size_t output_size = output.size(); // normalize the input first std::string normalized; normalize(text, &normalized); size_t input_len = normalized.size(); if (input_len == 0) { return; } // initialize score_sum to -FLT_MAX so it will be always lower than sums of token scores std::vector tokenization_results(input_len + 1, {vocab.special_unk_id, 0, -FLT_MAX}); // at the beginning tokenization score is zero tokenization_results[0] = { vocab.special_unk_id, 0, 0 }; for (size_t input_offset = 0; input_offset < input_len;) { size_t prefix_offset = input_offset; // calculate how many code units are in the currently processed UTF code point size_t n_utf8_code_units = std::min(unicode_len_utf8(normalized[input_offset]), input_len - input_offset); // traverse the token matcher trie to find a matching token bool single_codepoint_token_found = false; const struct best_tokenization & current_best = tokenization_results[input_offset]; const struct naive_trie * node = token_matcher.traverse(normalized[prefix_offset++]); while (prefix_offset <= input_len && node != NULL) { // check if we found valid token in prefix if (node->has_value) { // check if it corresponds to the whole UTF code point if (prefix_offset - input_offset == n_utf8_code_units) { single_codepoint_token_found = true; } llama_token token_id = node->value; const auto & token_data = vocab.id_to_token[token_id]; // we set the user-defined token scores to 0 to make them more likely to be selected // (normal token scores are log probabilities, so they are negative) // score type is double here to make tokenization results exactly // the same as in the HF tokenizer using SentencePiece const double token_score = llama_is_user_defined_token(vocab, token_id) ? 0.0 : token_data.score; const double challenger_score = current_best.score_sum + token_score; struct best_tokenization & current_champ = tokenization_results[prefix_offset]; if (challenger_score > current_champ.score_sum) { struct best_tokenization challenger = { token_id, input_offset, (float) challenger_score }; current_champ = challenger; } } node = node->traverse(normalized[prefix_offset++]); } // if we didn't find a valid token corresponding to the whole UTF code point // then use unknown token as the tokenization of this UTF code point if (!single_codepoint_token_found) { const double challenger_score = current_best.score_sum + unknown_token_score; prefix_offset = input_offset + n_utf8_code_units; struct best_tokenization & current_champ = tokenization_results[prefix_offset]; if (challenger_score > current_champ.score_sum) { struct best_tokenization challenger = { vocab.special_unk_id, input_offset, (float) challenger_score }; current_champ = challenger; } } // move to the next UTF code point input_offset += n_utf8_code_units; } // now backtrack from the end to gather token ids of the best tokenization // merge sequences of consecutive unknown tokens into single unknown tokens bool is_prev_unknown = false; for (struct best_tokenization & tokenization = tokenization_results[input_len]; ; tokenization = tokenization_results[tokenization.input_offset]) { bool is_unknown = tokenization.token_id == vocab.special_unk_id; if (!(is_prev_unknown && is_unknown)) { output.push_back(tokenization.token_id); } if (tokenization.input_offset == 0) { break; } is_prev_unknown = is_unknown; } // reverse the output since we added tokens starting from the end of the input std::reverse(output.begin() + output_size, output.end()); } private: const llama_vocab & vocab; // helper structure for returning normalization results struct normalization_result { const char * normalized; size_t normalized_len; size_t consumed_input; }; void normalize(const std::string& input, std::string * normalized) { normalized->clear(); normalized->reserve(input.size() * 3); const std::string space = vocab.tokenizer_escape_whitespaces ? escaped_space : " "; bool shall_prepend_space = !vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; bool shall_append_space = vocab.tokenizer_treat_whitespace_as_suffix && vocab.tokenizer_add_space_prefix; bool shall_merge_spaces = vocab.tokenizer_remove_extra_whitespaces; bool is_space_prepended = false; bool processing_non_ws = false; size_t input_len = input.size(); for (size_t input_offset = 0; input_offset < input_len; ) { auto norm_res = normalize_prefix(input, input_offset); for (size_t i = 0; i < norm_res.normalized_len; i++) { char c = norm_res.normalized[i]; if (c != ' ') { if (!processing_non_ws) { processing_non_ws = true; if ((shall_prepend_space && !is_space_prepended) || shall_merge_spaces) { normalized->append(space); is_space_prepended = true; } } normalized->push_back(c); } else { if (processing_non_ws) { processing_non_ws = false; } if (!shall_merge_spaces) { normalized->append(space); } } } input_offset += norm_res.consumed_input; } if (shall_append_space) { normalized->append(space); } } /* * This structure is a view wrapper for XOR-compressed double array (XCDA) * See Shunsuke Kanda (2018). Space- and Time-Efficient String Dictionaries. * Each bit-packed entry contains: * - BASE array value in bits 10-30 * - LCHECK array value in bits 0-7 * - LEAF array value in bit 9 * Entries containing indexes of replacement sequences have set bit 31 */ struct xcda_array_view { public: xcda_array_view(const uint32_t * xcda_array, size_t xcda_array_size) : xcda_array(xcda_array), xcda_array_size(xcda_array_size) { } uint32_t get_base(size_t index) { uint32_t packed_node = get_node(index); return (packed_node >> 10) << ((packed_node & (1U << 9)) >> 6); } uint32_t get_lcheck(size_t index) { uint32_t packed_node = get_node(index); return packed_node & ((1U << 31) | 0xff); } bool get_leaf(size_t index) { uint32_t packed_node = get_node(index); return (packed_node >> 8) & 1; } uint32_t get_value(size_t index) { uint32_t packed_node = get_node(index); return packed_node & ((1U << 31) - 1); } private: uint32_t get_node(size_t index) { if (index > xcda_array_size) { throw std::runtime_error("Index out of array bounds in XCDA array!"); } return xcda_array[index]; } const uint32_t * xcda_array; size_t xcda_array_size; }; struct normalization_result normalize_prefix(const std::string & input, size_t input_offset) { if (input_offset == input.size()) { return { &input[input_offset], 0, 0 }; } // if input prefix matches some user-defined token return this token as normalization result auto user_defined_token_match = user_defined_token_matcher.get_longest_prefix(&input[input_offset], input.size() - input_offset); if (user_defined_token_match.second > 0) { return { &input[input_offset], user_defined_token_match.second, user_defined_token_match.second }; } size_t longest_prefix_length = 0; size_t longest_prefix_offset = 0; if (xcda_array_size > 0) { struct xcda_array_view xcda_view(xcda_array, xcda_array_size); // Find the longest normalized sequence matching the input prefix by walking // the XOR-compressed compact double array (XCDA) starting from the root node // We find the index of the next node by calculating BASE[s] ^ c where s is // the index of the previous node and c is a numerical character value uint32_t node_index = 0; // get BASE of the root node node_index = xcda_view.get_base(node_index); for (size_t prefix_offset = input_offset; prefix_offset < input.size(); prefix_offset++) { unsigned char c = input[prefix_offset]; if (c == 0) { break; } node_index ^= c; // if value of LCHECK is not c it means that this is not a child of // the previous node, so we stop matching if (xcda_view.get_lcheck(node_index) != c) { break; } bool is_leaf = xcda_view.get_leaf(node_index); // get BASE of the current node node_index ^= xcda_view.get_base(node_index); // if LEAF of the current node is true, it means that its BASE points to the node // containing index of replacement sequence for currently matched input prefix if (is_leaf) { longest_prefix_length = prefix_offset - input_offset + 1; // get index of replacement sequence for currently matched input prefix longest_prefix_offset = xcda_view.get_value(node_index); } } } if (longest_prefix_length > 0) { // we have a match, so return the replacement sequence if (longest_prefix_offset >= prefix_replacements_size) { throw std::runtime_error("Index out of array bounds in precompiled charsmap!"); } const char * prefix_replacement = &prefix_replacements[longest_prefix_offset]; return { prefix_replacement, strlen(prefix_replacement), longest_prefix_length }; } else { // check if the input prefix contains a valid sequence of UTF-8 code units try { // if yes, return this sequence unmodified size_t prefix_offset = input_offset; unicode_cpt_from_utf8(input, prefix_offset); return { &input[input_offset], prefix_offset - input_offset, prefix_offset - input_offset }; } catch (std::invalid_argument & /*ex*/) { // if no, consume 1 byte and return U+FFFD - REPLACEMENT CHARACTER return { "\xEF\xBF\xBD", 3, 1 }; } } } // escaped space symbol - U+2581 (Lower One Eighth Block) const std::string escaped_space = "\xE2\x96\x81"; const char * prefix_replacements = NULL; size_t prefix_replacements_size = 0; const uint32_t * xcda_array = NULL; size_t xcda_array_size = 0; struct naive_trie user_defined_token_matcher; // this structure stores the best tokenization so far at input_offset struct best_tokenization { llama_token token_id; size_t input_offset; float score_sum; }; float min_score = FLT_MAX; float max_score = -FLT_MAX; float unknown_token_score_penalty = 10.0; float unknown_token_score; struct naive_trie token_matcher; }; // // RWKV tokenizer // static std::vector llama_unescape_rwkv_token(const std::string & escaped) { std::vector output; output.reserve(escaped.size()); // Parser state bool escaping = false; uint8_t hex_remaining = 0; uint8_t hex_acc = 0; // Step through characters, performing parsing for (const char & c : escaped) { // If we're parsing a hex code, interpret the next character if (hex_remaining != 0) { uint8_t value = (c >= 'a') ? (c - 'a' + 10) : (c - '0'); hex_acc = (hex_acc << 4) + value; hex_remaining -= 1; if (hex_remaining == 0) { output.push_back(hex_acc); hex_acc = 0; } continue; } // If we got an escape character, interpret it if (escaping) { if (c == 't') { output.push_back('\t'); } else if (c == 'n') { output.push_back('\n'); } else if (c == 'r') { output.push_back('\r'); } else if (c == 'x') { hex_remaining = 2; } else { output.push_back(c); } escaping = false; continue; } if (c == '\\') { escaping = true; continue; } output.push_back(c); } return output; } struct llm_tokenizer_rwkv { llm_tokenizer_rwkv(const llama_vocab & vocab): vocab(vocab) { // RWKV supports arbitrary byte tokens, but the vocab struct only supports string tokens. // For now, we decode the vocab here into the lookup we'll use for tokenization. // build trie for (unsigned int id = 0; id < vocab.id_to_token.size(); ++id) { const auto & token = vocab.id_to_token[id]; const auto data = llama_unescape_rwkv_token(token.text); token_matcher.insert((const char *) data.data(), data.size(), id); } } void tokenize(const std::string & text, std::vector & output) { uint32_t position = 0; while (position < text.size()) { const struct naive_trie * node = token_matcher.traverse(text[position]); if (node == NULL) { // no matching token found, add unknown token output.push_back(vocab.special_unk_id); position += 1; continue; } // traverse the trie to find the longest matching token uint32_t token_id = 0; uint32_t token_length = 0; while (node != NULL) { if (node->has_value) { token_id = node->value; token_length = position + 1; } node = node->traverse(text[++position]); } // add the longest matching token output.push_back(token_id); position = token_length; } } const llama_vocab & vocab; struct naive_trie token_matcher; }; // // (de-) tokenize // typedef enum FRAGMENT_BUFFER_VARIANT_TYPE { FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN, FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT } FRAGMENT_BUFFER_VARIANT_TYPE; struct fragment_buffer_variant { fragment_buffer_variant(llama_vocab::id _token) : type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN), token(_token), raw_text(_dummy), offset(0), length(0) {} fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length) : type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT), token((llama_vocab::id) - 1), raw_text(_raw_text), offset(_offset), length(_length){ GGML_ASSERT(_offset >= 0); GGML_ASSERT(_length >= 1); GGML_ASSERT(offset + length <= raw_text.length()); } const FRAGMENT_BUFFER_VARIANT_TYPE type; const llama_vocab::id token; const std::string _dummy; const std::string & raw_text; const uint64_t offset; const uint64_t length; }; // #define PRETOKENIZERDEBUG static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer, bool parse_special) { // for each special token for (const llama_vocab::id special_id : vocab.cache_special_tokens) { const auto & data = vocab.id_to_token[special_id]; const auto & special_token = data.text; if (!parse_special && (data.attr & (LLAMA_TOKEN_ATTR_CONTROL | LLAMA_TOKEN_ATTR_UNKNOWN))) { // Ignore control and unknown tokens when parse_special == false continue; // User-defined tokens are still pre-tokenized before everything else // ref: https://github.com/huggingface/tokenizers/blob/fdd26ba9a3f0c133427aab0423888cbde91362d7/tokenizers/src/tokenizer/mod.rs#L726 // This is mostly relevant for neox-style tokenizers (mpt, olmo, stablelm, etc.) } // for each text fragment std::forward_list::iterator it = buffer.begin(); while (it != buffer.end()) { auto & fragment = (*it); // if a fragment is text ( not yet processed ) if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto & raw_text = fragment.raw_text; auto raw_text_base_offset = fragment.offset; auto raw_text_base_length = fragment.length; // loop over the text while (true) { // find the first occurrence of a given special token in this fragment // passing offset argument only limit the "search area" but match coordinates // are still relative to the source full raw_text auto match = raw_text.find(special_token, raw_text_base_offset); // no occurrences found, stop processing this fragment for a given special token if (match == std::string::npos) break; // check if match is within bounds of offset <-> length if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break; #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif auto source = std::distance(buffer.begin(), it); // if match is further than base offset // then we have some text to the left of it if (match > raw_text_base_offset) { // left const int64_t left_reminder_offset = raw_text_base_offset + 0; int64_t left_reminder_length = match - raw_text_base_offset; if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) { while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) { left_reminder_length--; } } if (left_reminder_length > 0) { buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length); it++; } #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str()); #endif } // special token buffer.emplace_after(it, special_id); it++; // right if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) { int64_t right_reminder_offset = match + special_token.length(); int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length()); if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) { while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) { right_reminder_offset++; right_reminder_length--; } } if (right_reminder_length > 0) { buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length); it++; } #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str()); #endif if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } // repeat for the right side raw_text_base_offset = right_reminder_offset; raw_text_base_length = right_reminder_length; #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str()); #endif } else { if (source == 0) { buffer.erase_after(buffer.before_begin()); } else { buffer.erase_after(std::next(buffer.begin(), (source-1))); } break; } } } it++; } } } std::vector llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) { std::vector output; std::forward_list fragment_buffer; if (!raw_text.empty()) { fragment_buffer.emplace_front(raw_text, 0, raw_text.length()); tokenizer_st_partition(vocab, fragment_buffer, parse_special); } switch (vocab.type) { case LLAMA_VOCAB_TYPE_SPM: { // OG tokenizer behavior: // // tokenizer.encode('', add_special_tokens=True) returns [1] // tokenizer.encode('', add_special_tokens=False) returns [] bool is_prev_special = true; // prefix with space if first token if (add_special && vocab.tokenizer_add_bos) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); is_prev_special = true; } for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); // prefix with space if previous is special if (vocab.tokenizer_add_space_prefix && is_prev_special) { raw_text = " " + raw_text; } #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_spm tokenizer(vocab); llama_escape_whitespace(raw_text); tokenizer.tokenize(raw_text, output); is_prev_special = false; } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); is_prev_special = true; } } if (add_special && vocab.tokenizer_add_bos && output.size() >= 2 && output[1] == vocab.special_bos_id) { LLAMA_LOG_WARN( "%s: Added a BOS token to the prompt as specified by the model but the prompt " "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " "Are you sure this is what you want?\n", __FUNCTION__); } if (add_special && vocab.tokenizer_add_eos) { GGML_ASSERT(vocab.special_eos_id != -1); output.push_back(vocab.special_eos_id); } } break; case LLAMA_VOCAB_TYPE_BPE: { llm_tokenizer_bpe tokenizer(vocab); if (add_special) { tokenizer.append_bos(output); } for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) tokenizer.append(fragment.token, output); } } if (add_special) { tokenizer.append_eos(output); tokenizer.check_double_bos_eos(output); } } break; case LLAMA_VOCAB_TYPE_WPM: { if (add_special) { GGML_ASSERT(vocab.special_cls_id != -1); output.push_back(vocab.special_cls_id); } llm_tokenizer_wpm tokenizer(vocab); for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } if (add_special) { GGML_ASSERT(vocab.special_sep_id != -1); output.push_back(vocab.special_sep_id); } } break; case LLAMA_VOCAB_TYPE_UGM: { llm_tokenizer_ugm tokenizer(vocab); if (add_special && vocab.tokenizer_add_bos != 0) { GGML_ASSERT(vocab.special_bos_id != -1); output.push_back(vocab.special_bos_id); } for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } if (add_special && vocab.tokenizer_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) { LLAMA_LOG_WARN( "%s: Added a BOS token to the prompt as specified by the model but the prompt " "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. " "Are you sure this is what you want?\n", __FUNCTION__); } if (add_special && vocab.tokenizer_add_eos == 1) { GGML_ASSERT(vocab.special_eos_id != -1); output.push_back(vocab.special_eos_id); } } break; case LLAMA_VOCAB_TYPE_RWKV: { for (const auto & fragment : fragment_buffer) { if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) { auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length); #ifdef PRETOKENIZERDEBUG LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str()); #endif llm_tokenizer_rwkv tokenizer(vocab); tokenizer.tokenize(raw_text, output); } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN) output.push_back(fragment.token); } } } break; case LLAMA_VOCAB_TYPE_NONE: GGML_ABORT("fatal error"); } return output; } llama_token llama_byte_to_token_impl(const llama_vocab & vocab, uint8_t ch) { GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE); static const char * hex = "0123456789ABCDEF"; switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_SPM: case LLAMA_VOCAB_TYPE_UGM: { const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 }; auto token = vocab.token_to_id.find(buf); if (token != vocab.token_to_id.end()) { return (*token).second; } // Try to fall back to just the byte as a string const char buf2[2] = { (char)ch, 0 }; return vocab.token_to_id.at(buf2); } case LLAMA_VOCAB_TYPE_WPM: case LLAMA_VOCAB_TYPE_BPE: { return vocab.token_to_id.at(unicode_byte_to_utf8(ch)); } default: GGML_ABORT("fatal error"); } } const char * llama_token_get_text_impl(const struct llama_vocab & vocab, llama_token token) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[token].text.c_str(); } float llama_token_get_score_impl(const struct llama_vocab & vocab, llama_token token) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[token].score; } llama_token_attr llama_token_get_attr_impl(const struct llama_vocab & vocab, llama_token token) { GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE); return vocab.id_to_token[token].attr; } bool llama_token_is_eog_impl(const struct llama_vocab & vocab, llama_token token) { return token != -1 && ( token == llama_token_eos_impl(vocab) || token == llama_token_eot_impl(vocab) || token == llama_token_eom_impl(vocab) ); } bool llama_token_is_control_impl(const struct llama_vocab & vocab, llama_token token) { return llama_is_control_token(vocab, token); } llama_token llama_token_bos_impl(const struct llama_vocab & vocab) { return vocab.special_bos_id; } llama_token llama_token_eos_impl(const struct llama_vocab & vocab) { return vocab.special_eos_id; } llama_token llama_token_cls_impl(const struct llama_vocab & vocab) { return vocab.special_cls_id; } llama_token llama_token_sep_impl(const struct llama_vocab & vocab) { return vocab.special_sep_id; } llama_token llama_token_nl_impl(const struct llama_vocab & vocab) { return vocab.linefeed_id; } llama_token llama_token_pad_impl(const struct llama_vocab & vocab) { return vocab.special_pad_id; } bool llama_add_bos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_bos; } bool llama_add_eos_token_impl(const struct llama_vocab & vocab) { return vocab.tokenizer_add_eos; } llama_token llama_token_prefix_impl(const struct llama_vocab & vocab) { return vocab.special_prefix_id; } llama_token llama_token_middle_impl(const struct llama_vocab & vocab) { return vocab.special_middle_id; } llama_token llama_token_suffix_impl(const struct llama_vocab & vocab) { return vocab.special_suffix_id; } llama_token llama_token_eot_impl(const struct llama_vocab & vocab) { return vocab.special_eot_id; } llama_token llama_token_eom_impl(const struct llama_vocab & vocab) { return vocab.special_eom_id; } int32_t llama_tokenize_impl( const struct llama_vocab & vocab, const char * text, int32_t text_len, llama_token * tokens, int32_t n_tokens_max, bool add_special, bool parse_special) { auto res = llama_tokenize_internal(vocab, std::string(text, text_len), add_special, parse_special); if (n_tokens_max < (int) res.size()) { // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__); return -((int) res.size()); } for (size_t i = 0; i < res.size(); i++) { tokens[i] = res[i]; } return res.size(); } static std::string llama_decode_text(const std::string & text) { std::string decoded_text; const auto cpts = unicode_cpts_from_utf8(text); for (const auto cpt : cpts) { const auto utf8 = unicode_cpt_to_utf8(cpt); try { decoded_text += unicode_utf8_to_byte(utf8); } catch (const std::out_of_range & /*e*/) { decoded_text += "[UNK_BYTE_0x"; for (const auto c : utf8) { decoded_text += format("%02x", (uint8_t) c); } decoded_text += text + "]"; } } return decoded_text; } // does not write null-terminator to buf int32_t llama_token_to_piece_impl(const struct llama_vocab & vocab, llama_token token, char * buf, int32_t length, int32_t lstrip, bool special) { // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843 static const int attr_special = LLAMA_TOKEN_ATTR_UNKNOWN | LLAMA_TOKEN_ATTR_CONTROL; const llama_token_attr attr = llama_token_get_attr_impl(vocab, token); if (!special && (attr & attr_special)) { return 0; } // copy piece chars to output text buffer // skip up to 'lstrip' leading spaces before copying auto _try_copy = [=] (const char * token, size_t size) -> int32_t { for (int32_t i = 0; i < lstrip && size && *token == ' '; ++i) { token++; size--; } if (length < (int32_t)size) { return -(int32_t) size; } memcpy(buf, token, size); return (int32_t) size; }; // if we have a cache - use it { const auto & cache = vocab.cache_token_to_piece; if (!cache.empty()) { const auto & result = cache.at(token); return _try_copy(result.data(), result.size()); } } if (0 <= token && token < (int32_t) vocab.id_to_token.size()) { const std::string & token_text = vocab.id_to_token[token].text; switch (llama_vocab_get_type(vocab)) { case LLAMA_VOCAB_TYPE_WPM: case LLAMA_VOCAB_TYPE_SPM: case LLAMA_VOCAB_TYPE_UGM: { // NOTE: we accept all unsupported token types, // suppressing them like CONTROL tokens. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { return _try_copy(token_text.data(), token_text.size()); } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { std::string result = token_text; llama_unescape_whitespace(result); return _try_copy(result.data(), result.size()); } else if (attr & LLAMA_TOKEN_ATTR_BYTE) { char byte = (char) llama_token_to_byte(vocab, token); return _try_copy((char*) &byte, 1); } break; } case LLAMA_VOCAB_TYPE_BPE: { // NOTE: we accept all unsupported token types, // suppressing them like CONTROL tokens. if (attr & (attr_special | LLAMA_TOKEN_ATTR_USER_DEFINED)) { return _try_copy(token_text.data(), token_text.size()); } else if (attr & LLAMA_TOKEN_ATTR_NORMAL) { std::string result = llama_decode_text(token_text); return _try_copy(result.data(), result.size()); } break; } case LLAMA_VOCAB_TYPE_RWKV: { std::vector result = llama_unescape_rwkv_token(token_text); // If we don't have enough space, return an error if (result.size() > (size_t)length) { return -(int)result.size(); } memcpy(buf, result.data(), result.size()); return (int)result.size(); } default: GGML_ABORT("fatal error"); } } return 0; } int32_t llama_detokenize_impl( const struct llama_vocab & vocab, const llama_token * tokens, int32_t n_tokens, char * text, int32_t text_len_max, bool remove_special, bool unparse_special) { int32_t avail = text_len_max; int32_t total = 0; // remove the leading space bool remove_space = vocab.tokenizer_add_space_prefix; if (remove_special && vocab.tokenizer_add_bos) { if (n_tokens > 0 && tokens[0] == vocab.special_bos_id) { remove_space = false; n_tokens--; tokens++; } } if (remove_special && vocab.tokenizer_add_eos) { if (n_tokens > 0 && tokens[n_tokens-1] == vocab.special_eos_id) { n_tokens--; } } for (int32_t i = 0; i < n_tokens; ++i) { GGML_ASSERT(avail >= 0); int32_t n_chars = llama_token_to_piece_impl(vocab, tokens[i], text, avail, remove_space, unparse_special); remove_space = false; if (n_chars < 0) { avail = 0; total -= n_chars; } else if (n_chars > 0) { avail -= n_chars; text += n_chars; total += n_chars; } } if (total > text_len_max) { return -total; } if (vocab.tokenizer_clean_spaces) { text -= total; // restart text // first pass: characters ?!., //TODO: where do these characters come from? const int32_t total1 = total; total = total ? 1 : 0; for (int32_t i = 1; i < total1; ++i) { const char x = text[i]; if (text[i - 1] == ' ') { if (x == '?' || x == '!' || x == '.' || x == ',') { // " ?", " !", " .", " ," total--; // remove space } } text[total++] = x; } // second pass: strip single apostrophe between spaces const int32_t total2 = total; total = total ? 1 : 0; for (int32_t i = 1; i < total2; ++i) { const char x = text[i]; if (x == '\'' && i + 1 < total2 && text[i - 1] == ' ' && text[i + 1] == ' ') { // " ' " total--; // remove prev space text[++i] = '\0'; // remove next space } text[total++] = x; } // third pass: apostrophe contractions //NOTE: this makes sense? const int32_t total3 = total; total = total ? 1 : 0; for (int32_t i = 1; i < total3; ++i) { const char x = text[i]; if (text[i - 1] == ' ') { if (x == '\'' && i + 1 < total3) { const char x1 = text[i + 1]; if (x1 == 't' || x1 == 'd') { // " 't", " 'd" //total--; // remove space } else if (x1 == 's' || x1 == 'm') { // " 's", " 'm" total--; // remove space } else if (i + 2 < total3) { const char x2 = text[i + 2]; if ((x1 == 'l' && x2 == 'l')) { // " 'll" //total--; // remove space } else if ((x1 == 'r' && x2 == 'e') || (x1 == 'v' && x2 == 'e')) { // " 're", " 've" total--; // remove space } else { //total--; // remove space } } else { //total--; // remove space } } } text[total++] = x; } } return total <= text_len_max ? total : -total; }