/** * llama.cpp - commit 8962422b1c6f9b8b15f5aeaea42600bcc2d44177 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #pragma once #include "common.cuh" #include "vecdotq.cuh" #include "mma.cuh" #include #include #define MMQ_DP4A_MAX_BATCH_SIZE 64 // Max. batch size to use for dp4a MMQ kernels when FP16 tensor cores are available. #define MMQ_ITER_K 256 #define MMQ_NWARPS 8 typedef void (*load_tiles_mmq_t)(const char * __restrict__ x, int * x_tile, const int & kbx0, const int & i_max, const int & stride); typedef void (*vec_dot_mmq_t)(const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00); typedef void (*mmq_write_back_t)(const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max); enum mmq_q8_1_ds_layout { MMQ_Q8_1_DS_LAYOUT_D4, MMQ_Q8_1_DS_LAYOUT_DS4, MMQ_Q8_1_DS_LAYOUT_D2S6, }; struct block_q8_1_mmq { // The y float data is converted to a data layout that can simply be copied to shared memory as a contiguous block. // The y float data is first grouped as blocks of 128 values. // These blocks are then treated as individual data values and transposed. // // To avoid shared memory bank conflicts each block is padded with 16 bytes. // This padding is also used to store block scales/partial sums. // The scales multiplied with the quantized data are equal to the unquantized values. // The partial sums are obtained by summing up a subgroup of the contained values (prior to quantization) // and are only needed for performance reasons. // // The exact data stored depends on the x data type. union { float d4[4]; // 1 32 bit scale per 32 values, stored as d0,d1,d2,d3 half2 ds4[4]; // 1 16 bit scale + 1 16 bit partial sum per 32 values, stored as d0,s0,d1,s1,d2,s2,d3,s3 half d2s6[8]; // 1 16 bit scale per 64 values + 1 16 bit partial sum per 16 values for the first 96 values, // stored as d0,d1,s1,s2,s3,s4,s5 }; int8_t qs[4*QK8_1]; // 128 values quantized to 8 bit each }; static_assert(sizeof(block_q8_1_mmq) == 4*QK8_1 + 4*sizeof(half2), "Unexpected block_q8_1_mmq size"); static_assert(sizeof(block_q8_1_mmq) == 4*sizeof(block_q8_1), "Unexpected block_q8_1_mmq size"); static mmq_q8_1_ds_layout mmq_get_q8_1_ds_layout(const ggml_type type_x) { switch (type_x) { case GGML_TYPE_Q4_0: case GGML_TYPE_Q4_1: return MMQ_Q8_1_DS_LAYOUT_DS4; case GGML_TYPE_Q5_0: return MMQ_Q8_1_DS_LAYOUT_D4; case GGML_TYPE_Q5_1: return MMQ_Q8_1_DS_LAYOUT_DS4; case GGML_TYPE_Q8_0: return MMQ_Q8_1_DS_LAYOUT_D4; case GGML_TYPE_Q2_K: return MMQ_Q8_1_DS_LAYOUT_D2S6; case GGML_TYPE_Q3_K: return MMQ_Q8_1_DS_LAYOUT_D4; case GGML_TYPE_Q4_K: case GGML_TYPE_Q5_K: return MMQ_Q8_1_DS_LAYOUT_DS4; case GGML_TYPE_Q6_K: case GGML_TYPE_IQ2_XXS: case GGML_TYPE_IQ2_XS: case GGML_TYPE_IQ2_S: case GGML_TYPE_IQ3_XXS: case GGML_TYPE_IQ3_S: return MMQ_Q8_1_DS_LAYOUT_D4; case GGML_TYPE_IQ1_S: return MMQ_Q8_1_DS_LAYOUT_DS4; case GGML_TYPE_IQ4_XS: case GGML_TYPE_IQ4_NL: return MMQ_Q8_1_DS_LAYOUT_D4; default: GGML_ABORT("fatal error"); break; } } struct tile_x_sizes { int qs; int dm; int sc; }; static constexpr int get_mmq_x_max_host(const int cc) { return int8_mma_available(cc) ? 128 : #ifdef GGML_CUDA_FORCE_MMQ cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64; #else cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_DP4A_MAX_BATCH_SIZE : 64; #endif // GGML_CUDA_FORCE_MMQ } static constexpr __device__ int get_mmq_x_max_device() { #ifdef INT8_MMA_AVAILABLE return 128; #else // INT8_MMA_AVAILABLE #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) return 128; #else // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if __CUDA_ARCH__ >= CC_VOLTA #ifdef GGML_CUDA_FORCE_MMQ return MMQ_DP4A_MAX_BATCH_SIZE; #else // GGML_CUDA_FORCE_MMQ return 128; #endif // GGML_CUDA_FORCE_MMQ #else // __CUDA_ARCH__ >= CC_VOLTA return 64; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #endif // INT8_MMA_AVAILABLE } static constexpr int get_mmq_y_host(const int cc) { return cc >= CC_OFFSET_AMD ? (cc == CC_RDNA1 ? 64 : 128) : (cc >= CC_VOLTA ? 128 : 64); } static constexpr __device__ int get_mmq_y_device() { #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA1) return 64; #else return 128; #endif // defined RDNA1 #else #if __CUDA_ARCH__ >= CC_VOLTA return 128; #else return 64; #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) } #define MMQ_DP4A_TXS_Q4_0 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_0 + mmq_y/QI4_0, 0} #define MMQ_DP4A_TXS_Q4_1 tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_1 + mmq_y/QI4_1, 0} #define MMQ_DP4A_TXS_Q8_0 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_0 + mmq_y/(QI8_0/2), 0} #define MMQ_DP4A_TXS_Q8_0_16 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*4/QI8_0 + mmq_y/(QI8_0/4), 0} #define MMQ_DP4A_TXS_Q8_1 tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE*2/QI8_1 + mmq_y/(QI8_1/2), 0} #define MMQ_DP4A_TXS_Q2_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE + mmq_y, 0} #define MMQ_DP4A_TXS_Q3_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y, mmq_y*WARP_SIZE/8 + mmq_y/8} #define MMQ_DP4A_TXS_Q4_K tile_x_sizes{mmq_y*WARP_SIZE + mmq_y, mmq_y*WARP_SIZE/QI4_K, mmq_y*WARP_SIZE/8 + mmq_y/8} #define MMQ_DP4A_TXS_Q5_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI5_K + mmq_y/QI5_K, mmq_y*WARP_SIZE/8 + mmq_y/8} #define MMQ_DP4A_TXS_Q6_K tile_x_sizes{mmq_y*WARP_SIZE*2 + mmq_y, mmq_y*WARP_SIZE/QI6_K + mmq_y/QI6_K, mmq_y*WARP_SIZE/8 + mmq_y/8} static constexpr __host__ __device__ tile_x_sizes mmq_get_dp4a_tile_x_sizes(ggml_type type, int mmq_y) { return type == GGML_TYPE_Q4_0 ? MMQ_DP4A_TXS_Q4_0 : type == GGML_TYPE_Q4_1 ? MMQ_DP4A_TXS_Q4_1 : type == GGML_TYPE_Q5_0 ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_Q5_1 ? MMQ_DP4A_TXS_Q8_1 : type == GGML_TYPE_Q8_0 ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_Q2_K ? MMQ_DP4A_TXS_Q2_K : type == GGML_TYPE_Q3_K ? MMQ_DP4A_TXS_Q3_K : type == GGML_TYPE_Q4_K ? MMQ_DP4A_TXS_Q4_K : type == GGML_TYPE_Q5_K ? MMQ_DP4A_TXS_Q5_K : type == GGML_TYPE_Q6_K ? MMQ_DP4A_TXS_Q6_K : type == GGML_TYPE_IQ2_XXS ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_IQ2_XS ? MMQ_DP4A_TXS_Q8_0_16 : type == GGML_TYPE_IQ2_S ? MMQ_DP4A_TXS_Q8_0_16 : type == GGML_TYPE_IQ3_XXS ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_IQ3_S ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_IQ1_S ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_IQ4_XS ? MMQ_DP4A_TXS_Q8_0 : type == GGML_TYPE_IQ4_NL ? MMQ_DP4A_TXS_Q8_0 : tile_x_sizes{0, 0, 0}; } #define MMQ_MMA_TILE_X_K_Q8_0 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4) #define MMQ_MMA_TILE_X_K_Q8_1 (2*WARP_SIZE + 2*WARP_SIZE/QI8_0 + 4) #define MMQ_MMA_TILE_X_K_Q2_K (2*WARP_SIZE + WARP_SIZE + 4) #define MMQ_MMA_TILE_X_K_Q3_K (2*WARP_SIZE + WARP_SIZE/2 + 4) #define MMQ_MMA_TILE_X_K_Q6_K (2*WARP_SIZE + WARP_SIZE/QI6_K + WARP_SIZE/8 + 7) static_assert(MMQ_MMA_TILE_X_K_Q8_0 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q8_1 % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q2_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q3_K % 8 == 4, "Wrong padding."); static_assert(MMQ_MMA_TILE_X_K_Q6_K % 8 == 4, "Wrong padding."); static constexpr __host__ __device__ int mmq_get_mma_tile_x_k(ggml_type type) { return type == GGML_TYPE_Q4_0 ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_Q4_1 ? MMQ_MMA_TILE_X_K_Q8_1 : type == GGML_TYPE_Q5_0 ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_Q5_1 ? MMQ_MMA_TILE_X_K_Q8_1 : type == GGML_TYPE_Q8_0 ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_Q2_K ? MMQ_MMA_TILE_X_K_Q2_K : type == GGML_TYPE_Q3_K ? MMQ_MMA_TILE_X_K_Q3_K : type == GGML_TYPE_Q4_K ? MMQ_MMA_TILE_X_K_Q8_1 : type == GGML_TYPE_Q5_K ? MMQ_MMA_TILE_X_K_Q8_1 : type == GGML_TYPE_Q6_K ? MMQ_MMA_TILE_X_K_Q6_K : type == GGML_TYPE_IQ2_XXS ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_IQ2_XS ? MMQ_MMA_TILE_X_K_Q3_K : type == GGML_TYPE_IQ2_S ? MMQ_MMA_TILE_X_K_Q3_K : type == GGML_TYPE_IQ3_XXS ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_IQ3_S ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_IQ1_S ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_IQ4_XS ? MMQ_MMA_TILE_X_K_Q8_0 : type == GGML_TYPE_IQ4_NL ? MMQ_MMA_TILE_X_K_Q8_0 : 0; } #define MMQ_TILE_Y_K (WARP_SIZE + WARP_SIZE/QI8_1) static int mmq_get_granularity_host(const int mmq_x, const int cc) { return int8_mma_available(cc) && mmq_x >= 48 ? 16 : 8; } #ifdef INT8_MMA_AVAILABLE static constexpr __device__ int mmq_get_granularity_device(const int mmq_x) { return mmq_x >= 48 ? 16 : 8; } #else static constexpr __device__ int mmq_get_granularity_device(const int /* mmq_x */) { return 8; } #endif // INT8_MMA_AVAILABLE // ------------------------------------------------------------ template static __device__ __forceinline__ void load_tiles_q4_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI4_0; const int kqsx = threadIdx.x % QI4_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbx; const int qs0 = get_int_b2(bxi->qs, kqsx); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + 0] = __vsubss4((qs0 >> 0) & 0x0F0F0F0F, 0x08080808); x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI4_0) + kqsx + QI4_0] = __vsubss4((qs0 >> 4) & 0x0F0F0F0F, 0x08080808); #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_0) { int i = i0 + threadIdx.y * QI4_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_0 * bxi = (const block_q4_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q4_0_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_0, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_0*VDR_Q4_0_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2); int u[2*VDR_Q4_0_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_0_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l]; u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_0)]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_0_q8_1_impl (&x_qs[i*(WARP_SIZE + 1) + k0/QR4_0], u, x_df[i*(WARP_SIZE/QI4_0) + i/QI4_0 + k0/(QR4_0*QI4_0)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void load_tiles_q4_1( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI4_1; const int kqsx = threadIdx.x % QI4_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbx; const int qs0 = get_int_b4(bxi->qs, kqsx); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + 0] = (qs0 >> 0) & 0x0F0F0F0F; x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI4_1) + kqsx + QI4_1] = (qs0 >> 4) & 0x0F0F0F0F; #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_1) { int i = i0 + threadIdx.y * QI4_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q4_1 * bxi = (const block_q4_1 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q4_1_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_1, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_1*VDR_Q4_1_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int kyqs = QI8_1 * ((k01/2) / (QI8_1/2)) + (k01/2) % (QI8_1/2); int u[2*VDR_Q4_1_Q8_1_MMQ]; #pragma unroll for (int l = 0; l < VDR_Q4_1_Q8_1_MMQ; ++l) { u[2*l+0] = y_qs[j*MMQ_TILE_Y_K + kyqs + l]; u[2*l+1] = y_qs[j*MMQ_TILE_Y_K + kyqs + (l + QI4_1)]; } sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_1_q8_1_impl (&x_qs[i*(WARP_SIZE + 1) + k0/QR4_1], u, x_dm[i*(WARP_SIZE/QI4_1) + i/QI4_1 + k0/(QR4_1*QI4_1)], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void load_tiles_q5_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI5_0; const int kqsx = threadIdx.x % QI5_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbx; const int ql = get_int_b2(bxi->qs, kqsx); const int qh = get_int_b2(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_0)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 qs0 = __vsubss4(qs0, 0x10101010); // subtract 16 int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 qs1 = __vsubss4(qs1, 0x10101010); // subtract 16 #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + 0] = qs0; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; #else x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + 0] = qs0; x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_0) + kqsx + QI5_0] = qs1; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI5_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_0) { int i = i0 + threadIdx.y * QI5_0 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_0 * bxi = (const block_q5_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI5_0) + i/QI5_0 + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_q5_1( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI5_1; const int kqsx = threadIdx.x % QI5_1; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbx; const int ql = get_int_b4(bxi->qs, kqsx); const int qh = get_int_b4(bxi->qh, 0) >> (4 * (threadIdx.x % QI5_1)); int qs0 = (ql >> 0) & 0x0F0F0F0F; qs0 |= (qh << 4) & 0x00000010; // 0 -> 4 qs0 |= (qh << 11) & 0x00001000; // 1 -> 12 qs0 |= (qh << 18) & 0x00100000; // 2 -> 20 qs0 |= (qh << 25) & 0x10000000; // 3 -> 28 int qs1 = (ql >> 4) & 0x0F0F0F0F; qs1 |= (qh >> 12) & 0x00000010; // 16 -> 4 qs1 |= (qh >> 5) & 0x00001000; // 17 -> 12 qs1 |= (qh << 2) & 0x00100000; // 18 -> 20 qs1 |= (qh << 9) & 0x10000000; // 19 -> 28 #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + 0] = qs0; x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; #else x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + 0] = qs0; x_qs[i*(2*WARP_SIZE + 1) + kbx*(2*QI5_1) + kqsx + QI5_1] = qs1; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI5_1; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI5_1) { int i = i0 + threadIdx.y * QI5_1 + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q5_1 * bxi = (const block_q5_1 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + kbxd] = bxi->dm; #else x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + kbxd] = bxi->dm; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_q8_0( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_tile + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI8_0; const int kqsx = threadIdx.x % QI8_0; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbx; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx); x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx); #else x_qs[i*(2*WARP_SIZE + 1) + 0 + threadIdx.x] = get_int_b2(bxi[0].qs, kqsx); x_qs[i*(2*WARP_SIZE + 1) + WARP_SIZE + threadIdx.x] = get_int_b2(bxi[WARP_SIZE/QI8_0].qs, kqsx); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = 2*WARP_SIZE / QI8_0; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI8_0/2) { int i = i0 + threadIdx.y * (QI8_0/2) + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_q8_0 * bxi = (const block_q8_0 *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = bxi->d; #else x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q8_0_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q8_0, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_q8_1_impl (&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k0 % WARP_SIZE], x_df[i*(2*WARP_SIZE/QI8_0) + i/(QI8_0/2) + k0/QI8_0], y_df[j*MMQ_TILE_Y_K + (k0/QI8_1) % (WARP_SIZE/QI8_1)]); } } } } template static __device__ __forceinline__ void vec_dot_q8_0_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + 2*WARP_SIZE; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const half2 * y_ds = (const half2 *) y; mma_A A[ntx][WARP_SIZE/QI8_0]; float dA[ntx][mma_C::ne/2][WARP_SIZE/QI8_0]; const int i0 = (threadIdx.y/ntx)*rows_per_warp; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { const int k0 = k00 + k01; A[n][k01/QI8_0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_0 + k0, MMQ_MMA_TILE_X_K_Q8_0); } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { const int k0 = k00 + k01; dA[n][l][k01/QI8_0] = x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + k0/QI8_0]; } } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { mma_B B; float dB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); if (ds_layout == MMQ_Q8_1_DS_LAYOUT_D4) { dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; } else { dB[l] = __low2float(y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n][k01/QI8_0], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += C.x[l]*dA[n][l/2][k01/QI8_0]*dB[l%2]; } } } } } template static __device__ __forceinline__ void vec_dot_q8_1_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_1, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += VDR_Q8_0_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_1_q8_1_impl (&x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], x_dm[i*(WARP_SIZE/QI5_1) + i/QI5_1 + k0/QI8_1], y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void vec_dot_q8_1_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { typedef mma_int_A_I16K8 mma_A; typedef mma_int_B_J8K8 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + 2*WARP_SIZE; const int * y_qs = (const int *) y + 4; const half2 * y_dm = (const half2 *) y; mma_A A[ntx][WARP_SIZE/QI8_1]; float2 dmA[ntx][mma_C::ne/2][WARP_SIZE/QI8_1]; const int i0 = (threadIdx.y/ntx)*rows_per_warp; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { const int k0 = k00 + k01; A[n][k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q8_1 + k0, MMQ_MMA_TILE_X_K_Q8_1); } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_A::I + mma_C::get_i(2*l); #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { const int k0 = k00 + k01; dmA[n][l][k01/QI8_1] = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + k0/QI8_1]); } } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { mma_B B; float2 dsB[mma_C::ne/2]; B.load(y_qs + j0*MMQ_TILE_Y_K + k01, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dsB[l] = __half22float2(y_dm[j*MMQ_TILE_Y_K + k01/QI8_1]); } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C; C.mma_K8(A[n][k01/QI8_1], B); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].x*dsB[l%2].x*C.x[l]; sum[(j0/mma_C::J + n)*mma_C::ne + l] += dmA[n][l/2][k01/QI8_1].y*dsB[l%2].y; } } } } } template static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16; const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_0) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q8_0_16_q8_1_impl( &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], &x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + k0/(QI8_0/2)], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void vec_dot_q8_0_16_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_A_I16K8 mma_A_K8; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE*2; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][8]; float dA[ntx][mma_C::ne/2][8]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { const int k0 = k00 + k01; ((mma_A_K8 *) A[n])[k01/8].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q3_K + k0, MMQ_MMA_TILE_X_K_Q3_K); } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += 4) { const int k0 = k00 + k01; dA[n][l][k01/4] = x_df[i*MMQ_MMA_TILE_X_K_Q3_K + k0/4]; } } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) { mma_B B[2]; float dB[mma_C::ne/2]; B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C[2]; C[0].mma_K4(A[n][k01/4 + 0], B[0]); C[1].mma_K4(A[n][k01/4 + 1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += dB[l%2]*(C[0].x[l]*dA[n][l/2][k01/4 + 0] + C[1].x[l]*dA[n][l/2][k01/4 + 1]); } } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q2_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % QI2_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI2_K) { int i = i0 + threadIdx.y*(WARP_SIZE/QI2_K) + threadIdx.x/QI2_K; if (need_check) { i = min(i, i_max); } const block_q2_K * bxi = (const block_q2_K *) x + kbx0 + i*stride; const int x_ql_0 = get_int_b2(bxi->qs, kqsx); #pragma unroll for (int l = 0; l < QR2_K; ++l) { const int k = (kqsx/8)*32 + l*8 + kqsx % 8; const int x_qs_k = (x_ql_0 >> (2*l)) & 0x03030303; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q2_K + k] = x_qs_k; #else x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k; #endif // INT8_MMA_AVAILABLE } const int sc_m = bxi->scales[kqsx]; #ifdef FAST_FP16_AVAILABLE const half2 x_dm_ik = __hmul2(bxi->dm, make_half2(sc_m & 0x0F, sc_m >> 4)); #else const float2 bxi_dmf = __half22float2(bxi->dm); const half2 x_dm_ik = make_half2(bxi_dmf.x*(sc_m & 0x0F), bxi_dmf.y*(sc_m >> 4)); #endif // FAST_FP16_AVAILABLE #ifdef INT8_MMA_AVAILABLE x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + kqsx] = x_dm_ik; #else x_dm[i*(WARP_SIZE + 1) + kqsx] = x_dm_ik; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q2_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q2_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; float2 y_df[mmq_x/nwarps]; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; y_df[j0/nwarps] = __half22float2(y_ds[j*MMQ_TILE_Y_K]); } #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR2_K*VDR_Q2_K_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; if (k01 < WARP_SIZE/2) { constexpr int ns = 2; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq( &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], &x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y, &y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); } else { constexpr int ns = 1; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q2_K_q8_1_impl_mmq( &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], &x_dm[i*(WARP_SIZE + 1) + k0/4], k01 < WARP_SIZE/2 ? y_df[j0/nwarps].x : y_df[j0/nwarps].y, &y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); } } } } } template static __device__ __forceinline__ void vec_dot_q2_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_A_I16K8 mma_A_K8; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + WARP_SIZE*2; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][8]; float dA[ntx][mma_C::ne/2][8]; float mA[ntx][mma_C::ne/2][8]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { const int k0 = k00 + k01; ((mma_A_K8 *) A[n])[k01/QI8_1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q2_K + k0, MMQ_MMA_TILE_X_K_Q2_K); } } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1/2) { const int k0 = k00 + k01; const float2 dm = __half22float2(x_dm[i*MMQ_MMA_TILE_X_K_Q2_K + k0/(QI8_1/2)]); dA[n][l][k01/(QI8_1/2)] = dm.x; mA[n][l][k01/(QI8_1/2)] = dm.y; } } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { float2 dB[mma_C::ne/2]; #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K]); } #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QI8_1) { mma_B B[2]; B[0].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + 0), MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + (k01 + mma_B::K), MMQ_TILE_Y_K); mma_C Cm[2]; if (k01 >= WARP_SIZE * 3/4) { mma_A A1; A1.x[0] = 0x01010101; A1.x[1] = 0x01010101; Cm[0].mma_K4(A1, B[0]); Cm[1].mma_K4(A1, B[1]); } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C Cd[2]; Cd[0].mma_K4(A[n][k01/4 + 0], B[0]); Cd[1].mma_K4(A[n][k01/4 + 1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { float tmp = Cd[0].x[l]*dA[n][l/2][k01/4 + 0] + Cd[1].x[l]*dA[n][l/2][k01/4 + 1]; if (k01 >= WARP_SIZE * 3/4) { tmp -= Cm[0].x[l]*mA[n][l/2][k01/4 + 0] + Cm[1].x[l]*mA[n][l/2][k01/4 + 1]; } sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp*(k01 < WARP_SIZE/2 ? dB[l%2].x : dB[l%2].y); } } } #pragma unroll for (int k01 = 0; k01 < WARP_SIZE * 3/4; k01 += QI8_1) { float2 sB[mma_C::ne/2]; #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); sB[l] = __half22float2(y_ds[j*MMQ_TILE_Y_K + (1 + k01/QI8_1)]); } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 0]*sB[l%2].x; sum[(j0/mma_C::J + n)*mma_C::ne + l] -= mA[n][l/2][k01/4 + 1]*sB[l%2].y; } } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_q3_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); int * x_sc = (int *) (x_df + txs.dm); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % QI3_K; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI3_K) { int i = i0 + threadIdx.y * (WARP_SIZE/QI3_K) + threadIdx.x / QI3_K; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; const int x_ql_0 = get_int_b2(bxi->qs, kqsx); const int x_qh_0 = get_int_b2(bxi->hmask, kqsx % (QI3_K/2)) >> (4 * (kqsx / (QI3_K/2))); #pragma unroll for (int l = 0; l < QR3_K; ++l) { const int k = (kqsx/8)*32 + l*8 + kqsx % 8; const int x_ql_k = (x_ql_0 >> (2*l)) & 0x03030303; const int x_qh_k = ((x_qh_0 >> l) << 2) & 0x04040404; const int x_qs_k = __vsubss4(x_ql_k | x_qh_k, 0x04040404); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + k] = x_qs_k; #else x_qs[i*(2*WARP_SIZE + 1) + k] = x_qs_k; #endif // INT8_MMA_AVAILABLE } } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) { int i = i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8); if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; const int ksc = threadIdx.x % (WARP_SIZE/8); const int ksc_low = ksc % (QI3_K/8); const int shift_low = 4 * (ksc / (QI3_K/8)); const int sc_low = (get_int_b2(bxi->scales, ksc_low) >> shift_low) & 0x0F0F0F0F; const int ksc_high = QI3_K/8; const int shift_high = 2 * ksc; const int sc_high = ((get_int_b2(bxi->scales, ksc_high) >> shift_high) << 4) & 0x30303030; const int sc = __vsubss4(sc_low | sc_high, 0x20202020); #ifdef INT8_MMA_AVAILABLE const int8_t * sc8 = (const int8_t *) ≻ const float d = bxi->d; #pragma unroll for (int l = 0; l < sizeof(int); ++l) { x_df[i*MMQ_MMA_TILE_X_K_Q3_K + sizeof(int)*(threadIdx.x % (WARP_SIZE/8)) + l] = d*sc8[l]; } #else x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = sc; #endif // INT8_MMA_AVAILABLE } #ifndef INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*WARP_SIZE) { int i = (i0 + threadIdx.y*WARP_SIZE + threadIdx.x) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q3_K * bxi = (const block_q3_K *) x + kbx0 + i*stride; x_df[i] = bxi->d; } #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void vec_dot_q3_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q3_K, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * x_sc = (const int *) x_df + txs.dm; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR3_K*VDR_Q3_K_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int8_t * scales = ((const int8_t *) (x_sc + i*(WARP_SIZE/8) + i/8)) + k0/4; sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q3_K_q8_1_impl_mmq( &x_qs[i*(2*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], scales, x_df[i], y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } static __device__ __forceinline__ int unpack_scales_q45_K(const int * scales, const int ksc) { // scale arrangement after the following two lines: // - ksc == 0: sc0, sc1, sc2, sc3 // - ksc == 1: sc4, sc5, sc6, sc7 // - ksc == 2: m0, m1, m2, m3 // - ksc == 3: m4, m5, m6, m7 return ((scales[(ksc%2) + (ksc!=0)] >> (4 * (ksc & (ksc/2)))) & 0x0F0F0F0F) | // lower 4 bits ((scales[ksc/2] >> (2 * (ksc % 2))) & 0x30303030); // upper 2 bits } template static __device__ __forceinline__ void load_tiles_q4_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + 2*WARP_SIZE); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); int * x_sc = (int *) (x_dm + txs.dm); #endif // INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; const int qs0 = get_int_b4(bxi->qs, threadIdx.x); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 0] = (qs0 >> 0) & 0x0F0F0F0F; x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 16*(threadIdx.x/8) + threadIdx.x % 8 + 8] = (qs0 >> 4) & 0x0F0F0F0F; #else x_qs[i*(WARP_SIZE + 1) + threadIdx.x] = qs0; #endif // INT8_MMA_AVAILABLE } #ifdef INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) { int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/16); const int sc32 = unpack_scales_q45_K(scales, ksc + 0); const int m32 = unpack_scales_q45_K(scales, ksc + 2); const uint8_t * sc8 = (const uint8_t *) &sc32; const uint8_t * m8 = (const uint8_t *) &m32; const half2 dm = bxi->dm * make_half2(1.0f, -1.0f); #pragma unroll for (int l = 0; l < sizeof(int); ++l) { x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]); } } #else #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI4_K) { int i = (i0 + threadIdx.y*QI4_K + threadIdx.x) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride; x_dm[i] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q4_K * bxi = (const block_q4_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / (QI4_K/8); const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); const int scales8 = unpack_scales_q45_K(scales, ksc); x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; } #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void vec_dot_q4_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q4_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * x_sc = (const int *) x_dm + txs.dm; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR4_K*VDR_Q4_K_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = (const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/32] + 2*(k01/16); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q4_K_q8_1_impl_mmq( &x_qs[i*(WARP_SIZE + 1) + k0/2], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8, x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void load_tiles_q5_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); int * x_qs = (int *) x_tile; half2 * x_dm = (half2 *) (x_qs + txs.qs); int * x_sc = (int *) (x_dm + txs.dm); #endif // INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; const int ky = QR5_K*threadIdx.x; const int ql = get_int_b4(bxi->qs, threadIdx.x); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_b4(bxi->qh, threadIdx.x % (QI5_K/4)); const int qh0 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 0)) << 4) & 0x10101010; const int qh1 = ((qh >> (2 * (threadIdx.x / (QI5_K/4)) + 1)) << 4) & 0x10101010; const int kq0 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + 0; const int kq1 = ky - ky % (QI5_K/2) + threadIdx.x % (QI5_K/4) + QI5_K/4; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq0] = ql0 | qh0; x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + kq1] = ql1 | qh1; #else x_qs[i*(2*WARP_SIZE + 1) + kq0] = ql0 | qh0; x_qs[i*(2*WARP_SIZE + 1) + kq1] = ql1 | qh1; #endif // INT8_MMA_AVAILABLE } #ifdef INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*16) { int i = (i0 + threadIdx.y*16 + threadIdx.x/(WARP_SIZE/16)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/16); const int sc32 = unpack_scales_q45_K(scales, ksc + 0); const int m32 = unpack_scales_q45_K(scales, ksc + 2); const uint8_t * sc8 = (const uint8_t *) &sc32; const uint8_t * m8 = (const uint8_t *) &m32; const half2 dm = bxi->dm * make_half2(1.0f, -1.0f); #pragma unroll for (int l = 0; l < sizeof(int); ++l) { x_dm[i*MMQ_MMA_TILE_X_K_Q8_1 + sizeof(int)*ksc + l] = dm*make_half2(sc8[l], m8[l]); } } #else #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*QI5_K) { int i = (i0 + threadIdx.y*QI5_K + threadIdx.x) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; x_dm[i] = bxi->dm; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps*8) { int i = (i0 + threadIdx.y*8 + threadIdx.x/(WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q5_K * bxi = (const block_q5_K *) x + kbx0 + i*stride; const int * scales = (const int *) bxi->scales; const int ksc = threadIdx.x % (WARP_SIZE/8); const int scales8 = unpack_scales_q45_K(scales, ksc); x_sc[i*(WARP_SIZE/8) + i/8 + ksc] = scales8; } #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void vec_dot_q5_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q5_K, mmq_y); const int * x_qs = (const int *) x; const half2 * x_dm = (const half2 *) x_qs + txs.qs; const int * x_sc = (const int *) x_dm + txs.dm; const int * y_qs = (const int *) y + 4; const half2 * y_ds = (const half2 *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR5_K*VDR_Q5_K_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const uint8_t * sc = ((const uint8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k00/32]) + 2*(k01/16); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q5_K_q8_1_impl_mmq( &x_qs[i*(QR5_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, sc+8, x_dm[i], &y_ds[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void load_tiles_q6_K( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); int * x_sc = (int *) (x_df + WARP_SIZE/QI6_K); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); int * x_sc = (int *) (x_df + txs.dm); #endif // INT8_MMA_AVAILABLE #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride; const int ql = get_int_b2(bxi->ql, threadIdx.x); const int ql0 = (ql >> 0) & 0x0F0F0F0F; const int ql1 = (ql >> 4) & 0x0F0F0F0F; const int qh = get_int_b2(bxi->qh, (QI6_K/4) * (threadIdx.x / (QI6_K/2)) + threadIdx.x % (QI6_K/4)); const int qh0 = ((qh >> ((threadIdx.x & 0x08) >> 2)) << 4) & 0x30303030; const int qh1 = (qh >> ((threadIdx.x & 0x08) >> 2)) & 0x30303030; const int kq0 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + 0; const int kq1 = 2*threadIdx.x - threadIdx.x % (QI6_K/2) + QI6_K/2; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_qs[i*MMQ_MMA_TILE_X_K_Q6_K + kq1] = __vsubss4(ql1 | qh1, 0x20202020); #else x_qs[i*(2*WARP_SIZE + 1) + kq0] = __vsubss4(ql0 | qh0, 0x20202020); x_qs[i*(2*WARP_SIZE + 1) + kq1] = __vsubss4(ql1 | qh1, 0x20202020); #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256 const int kbxd = threadIdx.x % blocks_per_tile_x_row; // == 0 if QK_K == 256 #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI6_K) { int i = (i0 + threadIdx.y * QI6_K + threadIdx.x / blocks_per_tile_x_row) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q6_K + kbxd] = bxi->d; #else x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K + kbxd] = bxi->d; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 8) { int i = (i0 + threadIdx.y * 8 + threadIdx.x / (WARP_SIZE/8)) % mmq_y; if (need_check) { i = min(i, i_max); } const block_q6_K * bxi = (const block_q6_K *) x + kbx0 + i*stride + (threadIdx.x % (WARP_SIZE/8)) / 4; #ifdef INT8_MMA_AVAILABLE x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8)); #else x_sc[i*(WARP_SIZE/8) + i/8 + threadIdx.x % (WARP_SIZE/8)] = get_int_b2(bxi->scales, threadIdx.x % (QI6_K/8)); #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void vec_dot_q6_K_q8_1_dp4a( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_Q6_K, mmq_y); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + txs.qs; const int * x_sc = (const int *) x_df + txs.dm; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; // #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += QR6_K*VDR_Q6_K_Q8_1_MMQ) { const int k0 = k00 + k01; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; const int8_t * sc = ((const int8_t *) &x_sc[i * (WARP_SIZE/8) + i/8 + k0/16]); sum[j0/nwarps*mmq_y/WARP_SIZE + i0/WARP_SIZE] += vec_dot_q6_K_q8_1_impl_mmq( &x_qs[i*(QR6_K*WARP_SIZE + 1) + k0], &y_qs[j*MMQ_TILE_Y_K + k01], sc, x_df[i*(WARP_SIZE/QI6_K) + i/QI6_K], &y_df[j*MMQ_TILE_Y_K + k01/QI8_1]); } } } } template static __device__ __forceinline__ void vec_dot_q6_K_q8_1_mma( const int * __restrict__ x, const int * __restrict__ y, float * __restrict__ sum, const int & k00) { #ifdef INT8_MMA_AVAILABLE typedef mma_int_A_I16K4 mma_A; typedef mma_int_B_J8K4 mma_B; typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. y += (threadIdx.y % ntx) * (mma_B::J*MMQ_TILE_Y_K); const int * x_qs = (const int *) x; const float * x_df = (const float *) x_qs + WARP_SIZE*2; const int * x_sc = (const int *) x_df + WARP_SIZE/QI6_K; const int * y_qs = (const int *) y + 4; const float * y_df = (const float *) y; const int i0 = (threadIdx.y / ntx) * (ntx*mma_A::I); mma_A A[ntx][8]; int scA[ntx][mma_C::ne/2][8]; float dA[ntx][mma_C::ne/2]; #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { const int k0 = k00 + k01; A[n][k01/4 + 0].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + 0), MMQ_MMA_TILE_X_K_Q6_K); A[n][k01/4 + 1].load(x_qs + (i0 + n*mma_A::I)*MMQ_MMA_TILE_X_K_Q6_K + (k0 + mma_A::K), MMQ_MMA_TILE_X_K_Q6_K); } #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += 16) { const int k0 = k00 + k01; #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); const int sc_packed = x_sc[i*MMQ_MMA_TILE_X_K_Q6_K + k0/16]; const int8_t * sc = (const int8_t *) &sc_packed; #pragma unroll for (int ksc = 0; ksc < sizeof(int); ++ksc) { scA[n][l][k01/4 + ksc] = sc[ksc]; } } } #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int i = i0 + n*mma_C::I + mma_C::get_i(2*l); dA[n][l] = x_df[i*MMQ_MMA_TILE_X_K_Q6_K]; } } #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { float tmp[ntx][mma_C::ne] = {{0.0f}}; #pragma unroll for (int k01 = 0; k01 < WARP_SIZE; k01 += 8) { mma_B B[2]; float dB[mma_C::ne/2]; B[0].load(y_qs + j0*MMQ_TILE_Y_K + 0 + k01, MMQ_TILE_Y_K); B[1].load(y_qs + j0*MMQ_TILE_Y_K + mma_B::K + k01, MMQ_TILE_Y_K); #pragma unroll for (int l = 0; l < mma_C::ne/2; ++l) { const int j = j0 + mma_C::get_j(l); dB[l] = y_df[j*MMQ_TILE_Y_K + k01/QI8_1]; } #pragma unroll for (int n = 0; n < ntx; ++n) { mma_C C[2]; C[0].mma_K4(A[n][k01/4 + 0], B[0]); C[1].mma_K4(A[n][k01/4 + 1], B[1]); #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { tmp[n][l] += (C[0].x[l]*scA[n][l/2][k01/4 + 0] + C[1].x[l]*scA[n][l/2][k01/4 + 1])*dB[l%2]; } } } #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { sum[(j0/mma_C::J + n)*mma_C::ne + l] += tmp[n][l]*dA[n][l/2]; } } } #else GGML_UNUSED(x); GGML_UNUSED(y); GGML_UNUSED(sum); NO_DEVICE_CODE; #endif // INT8_MMA_AVAILABLE } template static __device__ __forceinline__ void load_tiles_iq4_nl( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_NL, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = threadIdx.x / QI4_NL; const int kqsx = threadIdx.x % QI4_NL; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbx; const int aux_q4 = get_int_b2(bxi->qs, kqsx); const int2 v = get_int_from_table_16(aux_q4); const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y; #else x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x; x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y; #endif // INT8_MMA_AVAILABLE } const int blocks_per_tile_x_row = WARP_SIZE / QI4_NL; const int kbxd = threadIdx.x % blocks_per_tile_x_row; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * QI4_NL) { int i = i0 + threadIdx.y * QI4_NL + threadIdx.x / blocks_per_tile_x_row; if (need_check) { i = min(i, i_max); } const block_iq4_nl * bxi = (const block_iq4_nl *) x + kbx0 + i*stride + kbxd; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kbxd] = __half2float(bxi->d); #else x_df[i*(WARP_SIZE/4) + i/4 + kbxd] = __half2float(bxi->d); #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq2_xxs( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_XXS, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % (QI2_XXS/2); #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XXS/2)) { int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XXS) + threadIdx.x/(QI2_XXS/2); if (need_check) { i = min(i, i_max); } const block_iq2_xxs * bxi = (const block_iq2_xxs *) x + kbx0 + i*stride; const int q2 = get_int_b2(bxi->qs, 2*kqsx+0); const uint8_t * aux8 = (const uint8_t *) &q2; const uint32_t aux32 = get_int_b2(bxi->qs, 2*kqsx+1); #pragma unroll for (int l = 0; l < QR2_XXS; ++l) { const int * grid_pos = (const int *) (iq2xxs_grid + aux8[l]); const int signs_packed = ksigns_iq2xs[(aux32 >> (7*l)) & 0x7F]; const int signs0 = __vcmpne4(((signs_packed & 0x03) << 7) | ((signs_packed & 0x0C) << 21), 0x00000000); const int grid0 = __vsub4(grid_pos[0] ^ signs0, signs0); const int signs1 = __vcmpne4(((signs_packed & 0x30) << 3) | ((signs_packed & 0xC0) << 17), 0x00000000); const int grid1 = __vsub4(grid_pos[1] ^ signs1, signs1); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid0; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid1; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid0; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid1; #endif // INT8_MMA_AVAILABLE } const int ls = aux32 >> 28; const float d = bxi->d; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/4; #else x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/4; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq2_xs( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = MMQ_DP4A_TXS_Q8_0_16; int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % (QI2_XS/2); #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_XS/2)) { int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_XS) + threadIdx.x/(QI2_XS/2); if (need_check) { i = min(i, i_max); } const block_iq2_xs * bxi = (const block_iq2_xs *) x + kbx0 + i*stride; const int2 q2_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); const uint16_t * q2 = (const uint16_t *) &q2_packed; #pragma unroll for (int l = 0; l < QR2_XS; ++l) { const uint32_t * grid_pos = (const uint32_t *)(iq2xs_grid + (q2[l] & 0x000001FF)); const uint32_t * signs = (const uint32_t *)(ksigns64 + (q2[l] >> 9)); const int grid_l = __vsub4(grid_pos[0] ^ signs[0], signs[0]); const int grid_h = __vsub4(grid_pos[1] ^ signs[1], signs[1]); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; #endif // INT8_MMA_AVAILABLE } const int ls = bxi->scales[kqsx]; const float d = bxi->d; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; #else x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq2_s( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ2_S, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % (QI2_S/2); #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI2_S/2)) { int i = i0 + threadIdx.y*(2*WARP_SIZE/QI2_S) + threadIdx.x/(QI2_S/2); if (need_check) { i = min(i, i_max); } const block_iq2_s * bxi = (const block_iq2_s *) x + kbx0 + i*stride; const int qs_packed = get_int_b2(bxi->qs, kqsx); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bxi->qh[kqsx]; const int signs_packed_32 = get_int_b2(bxi->qs, QK_K/32 + kqsx); const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; #pragma unroll for (int l = 0; l < QR2_S; ++l) { const int * grid_pos = (const int *)(iq2s_grid + (qs[l] | ((qh << (8-2*l)) & 0x300))); const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000); const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000); const int grid_l = __vsub4(grid_pos[0] ^ signs0, signs0); const int grid_h = __vsub4(grid_pos[1] ^ signs1, signs1); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*MMQ_MMA_TILE_X_K_Q3_K + 8*kqsx + (2*l + 1)] = grid_h; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; #endif // INT8_MMA_AVAILABLE } const int ls = bxi->scales[kqsx]; const float d = bxi->d; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; x_df[i*MMQ_MMA_TILE_X_K_Q3_K + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; #else x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+0] = ((ls & 0x0F)*d + d/2)/4; x_df[i*(2*WARP_SIZE*2/QI8_0) + i/(QI8_0/4) + 2*kqsx+1] = ((ls >> 4)*d + d/2)/4; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq3_xxs( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_XXS, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % (QI3_XXS/2); #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_XXS/2)) { int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_XXS) + threadIdx.x/(QI3_XXS/2); if (need_check) { i = min(i, i_max); } const block_iq3_xxs * bxi = (const block_iq3_xxs *) x + kbx0 + i*stride; const int2 q3_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); const uint8_t * q3 = (const uint8_t *) &q3_packed; const uint32_t aux32 = get_int_b2(bxi->qs, QK_K/16 + kqsx); #pragma unroll for (int l = 0; l < QR3_XXS; ++l) { const int2 grid_pos = make_int2(iq3xxs_grid[q3[2*l+0]], iq3xxs_grid[q3[2*l+1]]); const int * signs = (const int *)(ksigns64 + ((aux32 >> (7*l)) & 0x7F)); const int grid_l = __vsub4(grid_pos.x ^ signs[0], signs[0]); const int grid_h = __vsub4(grid_pos.y ^ signs[1], signs[1]); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l + 1)] = grid_h; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 0)] = grid_l; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l + 1)] = grid_h; #endif // INT8_MMA_AVAILABLE } const int ls = aux32 >> 28; const float d = bxi->d; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = (ls*d + d/2)/2; #else x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = (ls*d + d/2)/2; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq3_s( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % (QI3_S/2); #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/(QI3_S/2)) { int i = i0 + threadIdx.y*(2*WARP_SIZE/QI3_S) + threadIdx.x/(QI3_S/2); if (need_check) { i = min(i, i_max); } const block_iq3_s * bxi = (const block_iq3_s *) x + kbx0 + i*stride; const int2 qs_packed = make_int2(get_int_b2(bxi->qs, 2*kqsx+0), get_int_b2(bxi->qs, 2*kqsx+1)); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bxi->qh[kqsx]; const int signs_packed_32 = get_int_b2(bxi->signs, kqsx); const uint8_t * signs_packed_8 = (const uint8_t *) &signs_packed_32; #pragma unroll for (int l = 0; l < QR3_S; ++l) { const int2 grid_pos = make_int2( iq3s_grid[qs[2*l+0] | ((qh << (8 - 2*l)) & 0x100)], iq3s_grid[qs[2*l+1] | ((qh << (7 - 2*l)) & 0x100)]); const int signs0 = __vcmpne4(((signs_packed_8[l] & 0x03) << 7) | ((signs_packed_8[l] & 0x0C) << 21), 0x00000000); const int signs1 = __vcmpne4(((signs_packed_8[l] & 0x30) << 3) | ((signs_packed_8[l] & 0xC0) << 17), 0x00000000); const int grid_l = __vsub4(grid_pos.x ^ signs0, signs0); const int grid_h = __vsub4(grid_pos.y ^ signs1, signs1); #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+0)] = grid_l; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + 8*kqsx + (2*l+1)] = grid_h; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid_l; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid_h; #endif // INT8_MMA_AVAILABLE } const int ls = 1 + 2*((bxi->scales[kqsx/2] >> (((2*kqsx) << 1) & 0x04)) & 0x0F); const float d = bxi->d; #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + kqsx] = ls*d; #else x_df[i*(WARP_SIZE/4) + i/4 + kqsx] = ls*d; #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq1_s( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; half2 * x_ds = (half2 *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ3_S, mmq_y); int * x_qs = (int *) x_tile; half2 * x_ds = (half2 *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kqsx = threadIdx.x % QI1_S; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * WARP_SIZE/QI1_S) { int i = i0 + threadIdx.y*(WARP_SIZE/QI1_S) + threadIdx.x/QI1_S; if (need_check) { i = min(i, i_max); } const block_iq1_s * bxi = (const block_iq1_s *) x + kbx0 + i*stride; const int qs_packed = get_int_b2(bxi->qs, kqsx); const uint8_t * qs = (const uint8_t *) &qs_packed; const int qh = bxi->qh[kqsx]; #pragma unroll for (int l = 0; l < QR1_S/2; ++l) { const int grid = iq1s_grid_gpu[qs[l] | (((qh >> (3*l)) & 0x07) << 8)]; const int grid0 = (grid >> 0) & 0x0F0F0F0F; const int grid1 = (grid >> 4) & 0x0F0F0F0F; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+0)] = grid0; x_qs[i*MMQ_MMA_TILE_X_K_Q8_1 + 8*kqsx + (2*l+1)] = grid1; #else x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+0)] = grid0; x_qs[i*(2*WARP_SIZE + 1) + 8*kqsx + (2*l+1)] = grid1; #endif // INT8_MMA_AVAILABLE } const float d1q = __half2float(bxi->d) * (((qh >> 11) & 0x0E) + 1); const float delta = -1.0f + IQ1S_DELTA - (qh & 0x8000) * (2.0f*IQ1S_DELTA/0x8000); #ifdef INT8_MMA_AVAILABLE x_ds[i*MMQ_MMA_TILE_X_K_Q8_1 + kqsx] = make_half2(d1q, d1q*delta); #else x_ds[i*(WARP_SIZE/4) + i/4 + kqsx] = make_half2(d1q, d1q*delta); #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void load_tiles_iq4_xs( const char * __restrict__ x, int * __restrict__ x_tile, const int & kbx0, const int & i_max, const int & stride) { #ifdef INT8_MMA_AVAILABLE int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + WARP_SIZE*2); #else constexpr tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(GGML_TYPE_IQ4_XS, mmq_y); int * x_qs = (int *) x_tile; float * x_df = (float *) (x_qs + txs.qs); #endif // INT8_MMA_AVAILABLE const int kbx = 0; // threadIdx.x / QI4_XS const int kqsx = threadIdx.x; // threadIdx.x % QI4_XS #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps) { int i = i0 + threadIdx.y; if (need_check) { i = min(i, i_max); } const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride + kbx; const int aux_q4 = get_int_b4(bxi->qs, kqsx); const int2 v = get_int_from_table_16(aux_q4); const int k0 = 8 * (threadIdx.x / 4) + threadIdx.x % 4; #ifdef INT8_MMA_AVAILABLE x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 0] = v.x; x_qs[i*MMQ_MMA_TILE_X_K_Q8_0 + k0 + 4] = v.y; #else x_qs[i*(2*WARP_SIZE + 1) + k0 + 0] = v.x; x_qs[i*(2*WARP_SIZE + 1) + k0 + 4] = v.y; #endif // INT8_MMA_AVAILABLE } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += nwarps * 4) { int i = i0 + threadIdx.y * 4 + threadIdx.x / (WARP_SIZE/4); if (need_check) { i = min(i, i_max); } const block_iq4_xs * bxi = (const block_iq4_xs *) x + kbx0 + i*stride; const float d = __half2float(bxi->d); const int ls = ((bxi->scales_l[(threadIdx.x % 8)/2] >> (4*(threadIdx.x % 2))) & 0x0F) | (((bxi->scales_h >> (2*(threadIdx.x % 8))) & 0x03) << 4); #ifdef INT8_MMA_AVAILABLE x_df[i*MMQ_MMA_TILE_X_K_Q8_0 + threadIdx.x % 8] = d * (ls - 32); #else x_df[i*(WARP_SIZE/4) + i/4 + threadIdx.x % 8] = d * (ls - 32); #endif // INT8_MMA_AVAILABLE } } template static __device__ __forceinline__ void mmq_write_back_dp4a( const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; if (j > j_max) { return; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; if (need_check && i > i_max) { continue; } dst[j*stride + i] = sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; } } } template static __device__ __forceinline__ void mmq_write_back_mma( const float * __restrict__ sum, float * __restrict__ dst, const int & stride, const int & i_max, const int & j_max) { typedef mma_int_C_I16J8 mma_C; constexpr int granularity = mmq_get_granularity_device(mmq_x); constexpr int rows_per_warp = 2 * granularity; constexpr int ntx = rows_per_warp/mma_C::I; // Number of x minitiles per warp. const int i0 = (threadIdx.y / ntx) * (ntx*mma_C::I); #ifdef INT8_MMA_AVAILABLE static_assert(nwarps*mma_C::I == mmq_y, "nwarps*mma_C::I != mmq_y"); #endif // INT8_MMA_AVAILABLE #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += ntx*mma_C::J) { #pragma unroll for (int n = 0; n < ntx; ++n) { #pragma unroll for (int l = 0; l < mma_C::ne; ++l) { const int j = j0 + (threadIdx.y % ntx) * mma_C::J + mma_C::get_j(l); if (j > j_max) { continue; } const int i = i0 + n*mma_C::I + mma_C::get_i(l); if (need_check && i > i_max) { continue; } dst[j*stride + i] = sum[(j0/mma_C::J + n)*mma_C::ne + l]; } } } } // ------------------------------------------------------------------------------------------------------------------------------------- template struct mmq_type_traits; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_1; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_1_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_1_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_1; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q8_0_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q8_0; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q2_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q2_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q2_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q2_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q3_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q3_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q3_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q4_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q4_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q4_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q5_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q5_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q5_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_Q6_K_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_q6_K; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q6_K_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q6_K_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ2_XXS_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xxs; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ2_XS_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_xs; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ2_S_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq2_s; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_16_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_16_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ3_XXS_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_xxs; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ3_S_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq3_s; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ1_S_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq1_s; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_1_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_1_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ4_NL_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_nl; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template struct mmq_type_traits { static constexpr int vdr = VDR_IQ4_XS_Q8_1_MMQ; static constexpr load_tiles_mmq_t load_tiles = load_tiles_iq4_xs; static constexpr vec_dot_mmq_t vec_dot_mma = vec_dot_q8_0_q8_1_mma; static constexpr vec_dot_mmq_t vec_dot_dp4a = vec_dot_q8_0_q8_1_dp4a; }; template static __device__ void mul_mat_q_process_tile( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int & ne00, const int & ne01, const int & stride01, const int & ne10, const int & ne11, const int & stride11, const int & ne0, const int & it, const int & jt, const int & kb0_start, const int & kb0_stop) { constexpr int qk = ggml_cuda_type_traits::qk; constexpr int mmq_y = get_mmq_y_device(); constexpr load_tiles_mmq_t load_tiles = mmq_type_traits::load_tiles; extern __shared__ char data_mul_mat_q[]; int * tile_y = (int *) data_mul_mat_q; int * tile_x = tile_y + GGML_PAD(mmq_x*(WARP_SIZE + WARP_SIZE/QI8_1), nwarps*WARP_SIZE); #ifdef INT8_MMA_AVAILABLE constexpr vec_dot_mmq_t vec_dot = mmq_type_traits::vec_dot_mma; constexpr mmq_write_back_t write_back = mmq_write_back_mma; #else constexpr vec_dot_mmq_t vec_dot = mmq_type_traits::vec_dot_dp4a; constexpr mmq_write_back_t write_back = mmq_write_back_dp4a; #endif // INT8_MMA_AVAILABLE constexpr int blocks_per_iter = MMQ_ITER_K / qk; float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; const int tile_x_max_i = ne01 - it*mmq_y - 1; const int tile_y_max_j = ne11 - jt*mmq_x - 1; const int * y = (const int *) yc + jt*(mmq_x*sizeof(block_q8_1_mmq)/sizeof(int)); for (int kb0 = kb0_start; kb0 < kb0_stop; kb0 += blocks_per_iter) { load_tiles(x, tile_x, stride01*it*mmq_y + kb0, tile_x_max_i, stride01); { const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 0*sizeof(block_q8_1_mmq)/sizeof(int)); #pragma unroll for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) { int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x; tile_y[l] = by0[l]; } } __syncthreads(); vec_dot(tile_x, tile_y, sum, 0); __syncthreads(); { const int * by0 = y + stride11*(kb0*(qk*sizeof(block_q8_1_mmq) / (4*QK8_1*sizeof(int))) + 1*sizeof(block_q8_1_mmq)/sizeof(int)); #pragma unroll for (int l0 = 0; l0 < mmq_x*MMQ_TILE_Y_K; l0 += nwarps*WARP_SIZE) { int l = l0 + threadIdx.y*WARP_SIZE + threadIdx.x; tile_y[l] = by0[l]; } } __syncthreads(); vec_dot(tile_x, tile_y, sum, WARP_SIZE); __syncthreads(); } if (fixup) { write_back(sum, tmp_fixup + blockIdx.x*(mmq_x*mmq_y), mmq_y, mmq_y, mmq_x); } else { write_back(sum, dst + jt*mmq_x*ne0 + it*mmq_y, ne0, tile_x_max_i, tile_y_max_j); } } // The mul_mat_q kernel implements "stream-k" work partitioning as described in https://arxiv.org/abs/2301.03598 template #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) #if defined(RDNA3) || defined(RDNA2) __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // defined(RDNA3) || defined(RDNA2) #else #if __CUDA_ARCH__ >= CC_VOLTA __launch_bounds__(WARP_SIZE*nwarps, 1) #else __launch_bounds__(WARP_SIZE*nwarps, 2) #endif // __CUDA_ARCH__ >= CC_VOLTA #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__) static __global__ void mul_mat_q( const char * __restrict__ x, const char * __restrict__ yc, float * __restrict__ dst, float * __restrict__ tmp_fixup, const int ne00, const int ne01, const int stride01, const int ne10, const int ne11, const int stride11, const int ne0) { // Skip unused template specializations for faster compilation: if (mmq_x > get_mmq_x_max_device() || mmq_x % mmq_get_granularity_device(mmq_x) != 0) { NO_DEVICE_CODE; return; } constexpr int qk = ggml_cuda_type_traits::qk; constexpr int mmq_y = get_mmq_y_device(); // On AMD or old CUDA the performance with stream-k was worse, use conventional tiling instead: #if (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA { constexpr bool fixup = false; mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, blockIdx.x, blockIdx.y, 0, ne00/qk); return; } #endif // (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ < CC_VOLTA const int64_t blocks_per_ne00 = ne00 / qk; constexpr int blocks_per_iter = MMQ_ITER_K / qk; const int ntx = (ne11 + mmq_x - 1) / mmq_x; // Number of tiles x const int nty = (ne01 + mmq_y - 1) / mmq_y; // Number of tiles y // kbc == k block continuous, current index in continuous ijk space. int64_t kbc = (int64_t) blockIdx.x *blocks_per_ne00*ntx*nty / gridDim.x; int64_t kbc_stop = (int64_t)(blockIdx.x + 1)*blocks_per_ne00*ntx*nty / gridDim.x; kbc -= (kbc % blocks_per_ne00) % blocks_per_iter; kbc_stop -= (kbc_stop % blocks_per_ne00) % blocks_per_iter; // kb0 == k index when doing the matrix multiplication for an output tile. int kb0_start = kbc % blocks_per_ne00; int kb0_stop = min(blocks_per_ne00, kb0_start + kbc_stop - kbc); while (kbc < kbc_stop && kb0_stop == blocks_per_ne00) { const int jt = kbc / (blocks_per_ne00*nty); // j index of current tile. const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // i index of current tile. constexpr bool fixup = false; // All but (potentially) the last iterations write their data to dst rather than the fixup buffer. mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, it, jt, kb0_start, kb0_stop); kbc += blocks_per_ne00; kbc -= kbc % blocks_per_ne00; kb0_start = 0; kb0_stop = min(blocks_per_ne00, kbc_stop - kbc); } if (kbc >= kbc_stop) { return; } const int jt = kbc / (blocks_per_ne00*nty); const int it = (kbc - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; constexpr bool fixup = true; // Last index writes it data to fixup buffer to avoid data races with other blocks. mul_mat_q_process_tile (x, yc, dst, tmp_fixup, ne00, ne01, stride01, ne10, ne11, stride11, ne0, it, jt, kb0_start, kb0_stop); } template static __global__ void mul_mat_q_stream_k_fixup( float * __restrict__ dst, const float * __restrict__ tmp_last_tile, const int ne00, const int ne01, const int ne11, const int ne0, const int block_num_mmq) { constexpr int mmq_y = get_mmq_y_device(); constexpr int qk = ggml_cuda_type_traits::qk; constexpr int blocks_per_iter = MMQ_ITER_K / qk; const int64_t blocks_per_ne00 = ne00 / qk; float sum[mmq_x*mmq_y / (nwarps*WARP_SIZE)] = {0.0f}; const int ntx = (ne11 + mmq_x - 1) / mmq_x; const int nty = (ne01 + mmq_y - 1) / mmq_y; bool any_fixup = false; const int bidx_start = ((blockIdx.y*nty + blockIdx.x) * block_num_mmq) / (gridDim.y*gridDim.x); const int bidx_stop = ((blockIdx.y*nty + blockIdx.x + 1) * block_num_mmq + gridDim.y*gridDim.x - 1) / (gridDim.y*gridDim.x); int64_t kbc_0; int64_t kbc_stop_0 = (int64_t) bidx_start*blocks_per_ne00*ntx*nty / block_num_mmq; for (int bidx = bidx_start; bidx < bidx_stop; ++bidx) { kbc_0 = kbc_stop_0; kbc_stop_0 = (int64_t) (bidx + 1)*blocks_per_ne00*ntx*nty / block_num_mmq; const int64_t kbc = kbc_0 - (kbc_0 % blocks_per_ne00) % blocks_per_iter; const int64_t kbc_stop = kbc_stop_0 - (kbc_stop_0 % blocks_per_ne00) % blocks_per_iter; // Skip fixup tile if the MMQ CUDA block never wrote anything to it: if (kbc == kbc_stop || kbc_stop % blocks_per_ne00 == 0) { continue; } const int jt = kbc_stop / (blocks_per_ne00*nty); const int it = (kbc_stop - jt*(blocks_per_ne00*nty)) / blocks_per_ne00; // Skip fixup tile if it's unrelated to the output tile assigned to this CUDA block: if (it != blockIdx.x || jt != blockIdx.y) { continue; } any_fixup = true; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE] += tmp_last_tile[bidx*(mmq_x*mmq_y) + j*mmq_y + i]; } } } if (!any_fixup) { return; } dst += blockIdx.y*mmq_x*ne0 + blockIdx.x*mmq_y; const int i_max = ne01 - blockIdx.x*mmq_y - 1; const int j_max = ne11 - blockIdx.y*mmq_x - 1; #pragma unroll for (int j0 = 0; j0 < mmq_x; j0 += nwarps) { const int j = j0 + threadIdx.y; if (j > j_max) { return; } #pragma unroll for (int i0 = 0; i0 < mmq_y; i0 += WARP_SIZE) { const int i = i0 + threadIdx.x; if (need_check && i > i_max) { continue; } dst[j*ne0 + i] += sum[(j0/nwarps) * (mmq_y/WARP_SIZE) + i0/WARP_SIZE]; } } } struct mmq_args { const char * x; const char * y; float * dst; int64_t ne00; int64_t ne01; int64_t stride01; int64_t ne10; int64_t ne11; int64_t stride11; int64_t ne0; }; template static int mmq_get_shmem(const int mmq_x, const int mmq_y, const int cc) { const tile_x_sizes txs = mmq_get_dp4a_tile_x_sizes(type, mmq_y); const int mmq_tile_x_k = mmq_get_mma_tile_x_k(type); const int shmem_x = int8_mma_available(cc) ? mmq_y*mmq_tile_x_k*sizeof(int) : txs.qs*sizeof(int) + txs.dm*sizeof(half2) + txs.sc*sizeof(int); const int shmem_y = mmq_x*sizeof(block_q8_1_mmq); return shmem_x + GGML_PAD(shmem_y, MMQ_NWARPS*WARP_SIZE*sizeof(int)); } template static void launch_mul_mat_q(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int cc = ggml_cuda_info().devices[id].cc; const int nsm = ggml_cuda_info().devices[id].nsm; const int mmq_y = get_mmq_y_host(cc); const dim3 block_dims(WARP_SIZE, MMQ_NWARPS, 1); const int shmem = mmq_get_shmem(mmq_x, mmq_y, cc); #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) static bool shmem_limit_raised[GGML_CUDA_MAX_DEVICES] = {false}; if (!shmem_limit_raised[id]) { CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); CUDA_CHECK(cudaFuncSetAttribute(mul_mat_q, cudaFuncAttributeMaxDynamicSharedMemorySize, shmem)); shmem_limit_raised[id] = true; } #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) const int nty = (args.ne01 + mmq_y - 1) / mmq_y; const int ntx = (args.ne11 + mmq_x - 1) / mmq_x; const dim3 block_nums_xy_tiling(nty, ntx, 1); const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; if (!use_stream_k) { if (args.ne01 % mmq_y == 0) { constexpr bool need_check = false; mul_mat_q<<>> (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.dst, nullptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); } return; } const dim3 block_nums_mmq(nsm, 1, 1); ggml_cuda_pool & pool = ctx.pool(id); ggml_cuda_pool_alloc tmp_fixup(pool, block_nums_mmq.x * mmq_x*mmq_y); if (args.ne01 % mmq_y == 0) { constexpr bool need_check = false; mul_mat_q<<>> (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q_stream_k_fixup<<>> (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); } else { constexpr bool need_check = true; mul_mat_q<<>> (args.x, args.y, args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.stride01, args.ne10, args.ne11, args.stride11, args.ne0); mul_mat_q_stream_k_fixup<<>> (args.dst, tmp_fixup.ptr, args.ne00, args.ne01, args.ne11, args.ne0, block_nums_mmq.x); } } template void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) { const int id = ggml_cuda_get_device(); const int nsm = ggml_cuda_info().devices[id].nsm; const int cc = ggml_cuda_info().devices[id].cc; const int smpbo = ggml_cuda_info().devices[id].smpbo; const int mmq_x_max = get_mmq_x_max_host(cc); const int mmq_y = get_mmq_y_host(cc); const int block_num_y = (args.ne01 + mmq_y - 1) / mmq_y; const bool use_stream_k = cc >= CC_VOLTA && cc < CC_OFFSET_AMD; int mmq_x_best = 0; int nparts_best = INT_MAX; for (int mmq_x = 8; mmq_x <= mmq_x_max && nparts_best > 1; mmq_x += 8) { const int granularity = mmq_get_granularity_host(mmq_x, cc); if (mmq_x % granularity != 0 || mmq_get_shmem(mmq_x, mmq_y, cc) > smpbo) { continue; } const int ntiles_x = (args.ne11 + mmq_x - 1) / mmq_x; const int nwaves_xy_tiling = ntiles_x*block_num_y; const int nparts = use_stream_k ? ntiles_x : nwaves_xy_tiling; if (nparts < nparts_best) { mmq_x_best = mmq_x; nparts_best = nparts; } } switch (mmq_x_best) { case 8: launch_mul_mat_q(ctx, args, stream); break; case 16: launch_mul_mat_q(ctx, args, stream); break; case 24: launch_mul_mat_q(ctx, args, stream); break; case 32: launch_mul_mat_q(ctx, args, stream); break; case 40: launch_mul_mat_q(ctx, args, stream); break; case 48: launch_mul_mat_q(ctx, args, stream); break; case 56: launch_mul_mat_q(ctx, args, stream); break; case 64: launch_mul_mat_q(ctx, args, stream); break; case 72: launch_mul_mat_q(ctx, args, stream); break; case 80: launch_mul_mat_q(ctx, args, stream); break; case 88: launch_mul_mat_q(ctx, args, stream); break; case 96: launch_mul_mat_q(ctx, args, stream); break; case 104: launch_mul_mat_q(ctx, args, stream); break; case 112: launch_mul_mat_q(ctx, args, stream); break; case 120: launch_mul_mat_q(ctx, args, stream); break; case 128: launch_mul_mat_q(ctx, args, stream); break; default: fprintf(stderr, "mmq_x_best=%d\n", mmq_x_best); GGML_ABORT("fatal error"); break; } } #define DECL_MMQ_CASE(type) \ template void mul_mat_q_case(ggml_backend_cuda_context & ctx, const mmq_args & args, cudaStream_t stream) \ extern DECL_MMQ_CASE(GGML_TYPE_Q4_0); extern DECL_MMQ_CASE(GGML_TYPE_Q4_1); extern DECL_MMQ_CASE(GGML_TYPE_Q5_0); extern DECL_MMQ_CASE(GGML_TYPE_Q5_1); extern DECL_MMQ_CASE(GGML_TYPE_Q8_0); extern DECL_MMQ_CASE(GGML_TYPE_Q2_K); extern DECL_MMQ_CASE(GGML_TYPE_Q3_K); extern DECL_MMQ_CASE(GGML_TYPE_Q4_K); extern DECL_MMQ_CASE(GGML_TYPE_Q5_K); extern DECL_MMQ_CASE(GGML_TYPE_Q6_K); extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XXS); extern DECL_MMQ_CASE(GGML_TYPE_IQ2_XS); extern DECL_MMQ_CASE(GGML_TYPE_IQ2_S); extern DECL_MMQ_CASE(GGML_TYPE_IQ3_XXS); extern DECL_MMQ_CASE(GGML_TYPE_IQ3_S); extern DECL_MMQ_CASE(GGML_TYPE_IQ1_S); extern DECL_MMQ_CASE(GGML_TYPE_IQ4_NL); extern DECL_MMQ_CASE(GGML_TYPE_IQ4_XS); // ------------------------------------------------------------------------------------------------------------------------- void ggml_cuda_op_mul_mat_q( ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i, const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols, const int64_t src1_padded_row_size, cudaStream_t stream); bool ggml_cuda_should_use_mmq(enum ggml_type type, int cc, int64_t ne11);