/** * llama.cpp - commit 3f1ae2e32cde00c39b96be6d01c2997c29bae555 - do not edit this file * * MIT License * * Copyright (c) 2023-2024 The ggml authors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "common.cuh" #include "rwkv-wkv.cuh" static __global__ void rwkv_wkv_f32(const int B, const int T, const int C, const int H, const float * k, const float * v, const float * r, const float * tf, const float * td, const float * s, float * dst) { const int tid = threadIdx.x; const int bid = blockIdx.x; const int head_size = CUDA_WKV_BLOCK_SIZE; const int batch_i = bid / H; const int head_i = bid % H; const int state_size = C * head_size; const int n_seq_tokens = T / B; float state[head_size]; __shared__ float _k[head_size], _r[head_size], _tf[head_size], _td[head_size]; #pragma unroll for (int i = 0; i < head_size; i++) { state[i] = s[batch_i * state_size + head_i * head_size * head_size + i * head_size + tid]; } __syncthreads(); _tf[tid] = tf[head_i * head_size + tid]; __syncthreads(); for (int t = batch_i * n_seq_tokens * C + head_i * head_size + tid; t < (batch_i + 1) * n_seq_tokens * C + head_i * head_size + tid; t += C) { __syncthreads(); _k[tid] = k[t]; _r[tid] = r[t]; _td[tid] = td[t]; __syncthreads(); const float _v = v[t]; float y = 0; for (int j = 0; j < head_size; j += 4) { const float4& k = (float4&)(_k[j]); const float4& r = (float4&)(_r[j]); const float4& tf = (float4&)(_tf[j]); const float4& td = (float4&)(_td[j]); float4& s = (float4&)(state[j]); float4 kv; kv.x = k.x * _v; kv.y = k.y * _v; kv.z = k.z * _v; kv.w = k.w * _v; y += r.x * (tf.x * kv.x + s.x); y += r.y * (tf.y * kv.y + s.y); y += r.z * (tf.z * kv.z + s.z); y += r.w * (tf.w * kv.w + s.w); s.x = s.x * td.x + kv.x; s.y = s.y * td.y + kv.y; s.z = s.z * td.z + kv.z; s.w = s.w * td.w + kv.w; } dst[t] = y; } #pragma unroll for (int i = 0; i < head_size; i++) { dst[T * C + batch_i * state_size + head_i * head_size * head_size + i * head_size + tid] = state[i]; } } void ggml_cuda_op_rwkv_wkv(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const float * k_d = (const float *)dst->src[0]->data; const float * v_d = (const float *)dst->src[1]->data; const float * r_d = (const float *)dst->src[2]->data; const float * tf_d = (const float *)dst->src[3]->data; const float * td_d = (const float *)dst->src[4]->data; const float * s_d = (const float *)dst->src[5]->data; const int64_t B = dst->src[5]->ne[1]; const int64_t T = dst->src[0]->ne[3]; const int64_t C = dst->ne[0]; const int64_t H = dst->src[0]->ne[2]; float * dst_d = (float *)dst->data; cudaStream_t stream = ctx.stream(); GGML_ASSERT(dst->src[5]->type == GGML_TYPE_F32); GGML_ASSERT(C % H == 0); GGML_ASSERT(C / H == CUDA_WKV_BLOCK_SIZE); rwkv_wkv_f32<<>>(B, T, C, H, k_d, v_d, r_d, tf_d, td_d, s_d, dst_d); }