Compare commits

..

45 commits

Author SHA1 Message Date
0c61920bc9
Merge https://github.com/ollama/ollama
Signed-off-by: baalajimaestro <me@baalajimaestro.me>
2024-08-25 22:02:07 +05:30
Daniel Hiltgen
0f92b19bec
Only enable numa on CPUs (#6484)
The numa flag may be having a performance impact on multi-socket systems with GPU loads
2024-08-24 17:24:50 -07:00
Daniel Hiltgen
69be940bf6
gpu: Group GPU Library sets by variant (#6483)
The recent cuda variant changes uncovered a bug in ByLibrary
which failed to group by common variant for GPU types.
2024-08-23 15:11:56 -07:00
Michael Yang
9638c24c58
Merge pull request #5446 from ollama/mxyng/faq
update faq
2024-08-23 14:05:59 -07:00
Michael Yang
bb362caf88 update faq 2024-08-23 13:37:21 -07:00
Patrick Devine
0c819e167b
convert safetensor adapters into GGUF (#6327) 2024-08-23 11:29:56 -07:00
Daniel Hiltgen
7a1e1c1caf
gpu: Ensure driver version set before variant (#6480)
During rebasing, the ordering was inverted causing the cuda version
selection logic to break, with driver version being evaluated as zero
incorrectly causing a downgrade to v11.
2024-08-23 11:21:12 -07:00
Daniel Hiltgen
0b03b9c32f
llm: Align cmake define for cuda no peer copy (#6455)
Define changed recently and this slipped through the cracks with the old
name.
2024-08-23 11:20:39 -07:00
Daniel Hiltgen
90ca84172c
Fix embeddings memory corruption (#6467)
* Fix embeddings memory corruption

The patch was leading to a buffer overrun corruption.  Once removed though, parallism
in server.cpp lead to hitting an assert due to slot/seq IDs being >= token count.  To
work around this, only use slot 0 for embeddings.

* Fix embed integration test assumption

The token eval count has changed with recent llama.cpp bumps (0.3.5+)
2024-08-22 14:51:42 -07:00
Michael Yang
6bd8a4b0a1
Merge pull request #6064 from ollama/mxyng/convert-llama3
convert: update llama conversion for llama3.1
2024-08-21 12:57:09 -07:00
Michael Yang
77903ab8b4 llama3.1 2024-08-21 11:49:31 -07:00
Michael Yang
e22286c9e1
Merge pull request #5365 from ollama/mxyng/convert-gemma2
convert gemma2
2024-08-21 11:48:43 -07:00
Michael Yang
107f695929
Merge pull request #4917 from ollama/mxyng/convert-bert
convert bert model from safetensors
2024-08-21 11:48:29 -07:00
Michael Yang
4ecc70d3b4
Merge pull request #6386 from zwwhdls/fix-new-layer
fix: chmod new layer to 0o644 when creating it
2024-08-21 10:58:45 -07:00
Michael Yang
3546bbd08c convert gemma2 2024-08-20 17:27:51 -07:00
Michael Yang
beb49eef65 create bert models from cli 2024-08-20 17:27:34 -07:00
Michael Yang
5a28b9cf5f bert 2024-08-20 17:27:34 -07:00
Daniel Hiltgen
a017cf2fea
Split rocm back out of bundle (#6432)
We're over budget for github's maximum release artifact size with rocm + 2 cuda
versions.  This splits rocm back out as a discrete artifact, but keeps the layout so it can
be extracted into the same location as the main bundle.
2024-08-20 07:26:38 -07:00
Daniel Hiltgen
19e5a890f7
CI: remove directories from dist dir before upload step (#6429) 2024-08-19 15:19:21 -07:00
Daniel Hiltgen
f91c9e3709
CI: handle directories during checksum (#6427) 2024-08-19 13:48:45 -07:00
Daniel Hiltgen
2df6905ede
Merge pull request #6424 from dhiltgen/cuda_v12
Fix overlapping artifact name on CI
2024-08-19 12:11:58 -07:00
Daniel Hiltgen
d8be22e47d Fix overlapping artifact name on CI 2024-08-19 12:07:18 -07:00
Daniel Hiltgen
652c273f0e
Merge pull request #5049 from dhiltgen/cuda_v12
Cuda v12
2024-08-19 11:14:24 -07:00
Daniel Hiltgen
88e7705079
Merge pull request #6402 from rick-github/numParallel
Override numParallel in pickBestPartialFitByLibrary() only if unset.
2024-08-19 11:07:22 -07:00
Daniel Hiltgen
f9e31da946 Review comments 2024-08-19 10:36:15 -07:00
Daniel Hiltgen
88bb9e3328 Adjust layout to bin+lib/ollama 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
3b19cdba2a Remove Jetpack 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
927d98a6cd Add windows cuda v12 + v11 support 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
f6c811b320 Enable cuda v12 flags 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
4fe3a556fa Add cuda v12 variant and selection logic
Based on compute capability and driver version, pick
v12 or v11 cuda variants.
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
fc3b4cda89 Report GPU variant in log 2024-08-19 09:38:53 -07:00
Daniel Hiltgen
d470ebe78b Add Jetson cuda variants for arm
This adds new variants for arm64 specific to Jetson platforms
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
c7bcb00319 Wire up ccache and pigz in the docker based build
This should help speed things up a little
2024-08-19 09:38:53 -07:00
Daniel Hiltgen
74d45f0102 Refactor linux packaging
This adjusts linux to follow a similar model to windows with a discrete archive
(zip/tgz) to cary the primary executable, and dependent libraries. Runners are
still carried as payloads inside the main binary

Darwin retain the payload model where the go binary is fully self contained.
2024-08-19 09:38:53 -07:00
Jeffrey Morgan
9fddef3731
server: limit upload parts to 16 (#6411) 2024-08-19 09:20:52 -07:00
Richard Lyons
885cf45087 Fix white space. 2024-08-18 03:07:16 +02:00
Richard Lyons
9352eeb752 Reset NumCtx. 2024-08-18 02:55:01 +02:00
Richard Lyons
0ad0e738cd Override numParallel only if unset. 2024-08-18 01:43:26 +02:00
zwwhdls
bdc4308afb fix: chmod new layer to 0o644 when creating it
Signed-off-by: zwwhdls <zww@hdls.me>
2024-08-16 11:43:19 +08:00
Daniel Hiltgen
d29cd4c2ed
Merge pull request #6381 from eust-w/main
fix: Add tooltip to system tray icon
2024-08-15 15:31:15 -07:00
eust-w
a84c05cf91 fix: Add tooltip to system tray icon
- Updated setIcon method to include tooltip text for the system tray icon.
- Added NIF_TIP flag and set the tooltip text using UTF16 encoding.

Resolves: #6372
2024-08-16 06:00:12 +08:00
Michael Yang
e3d7f32af7
Merge pull request #6363 from ollama/mxyng/fix-noprune
fix: noprune on pull
2024-08-15 12:20:38 -07:00
Michael Yang
3a75e74e34 only skip invalid json manifests 2024-08-15 10:29:14 -07:00
Michael Yang
237dccba1e skip invalid manifest files 2024-08-14 16:55:45 -07:00
Michael Yang
b3f75fc812 fix noprune 2024-08-14 15:48:51 -07:00
59 changed files with 1647 additions and 471 deletions

View file

@ -187,6 +187,13 @@ jobs:
generate-windows-cuda:
environment: release
runs-on: windows
strategy:
matrix:
cuda:
- version: "11"
url: 'https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe'
- version: "12"
url: 'https://developer.download.nvidia.com/compute/cuda/12.4.0/local_installers/cuda_12.4.0_551.61_windows.exe'
env:
KEY_CONTAINER: ${{ vars.KEY_CONTAINER }}
steps:
@ -220,11 +227,11 @@ jobs:
with:
go-version-file: go.mod
cache: true
- name: 'Install CUDA'
- name: 'Install CUDA ${{ matrix.cuda.version }}'
run: |
$ErrorActionPreference = "Stop"
write-host "downloading CUDA Installer"
Invoke-WebRequest -Uri "https://developer.download.nvidia.com/compute/cuda/11.3.1/local_installers/cuda_11.3.1_465.89_win10.exe" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
Invoke-WebRequest -Uri "${{ matrix.cuda.url }}" -OutFile "${env:RUNNER_TEMP}\cuda-install.exe"
write-host "Installing CUDA"
Start-Process "${env:RUNNER_TEMP}\cuda-install.exe" -ArgumentList '-s' -NoNewWindow -Wait
write-host "Completed CUDA"
@ -256,15 +263,16 @@ jobs:
cp "${NVIDIA_DIR}\cublasLt64_*.dll" "dist\deps\"
- uses: actions/upload-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-${{ matrix.cuda.version }}
path: |
llm/build/**/bin/*
dist/windows-amd64/**
- uses: actions/upload-artifact@v4
with:
name: windows-cuda-deps
name: windows-cuda-deps-${{ matrix.cuda.version }}
path: dist/deps/*
# Import the prior generation steps and build the final windows assets
build-windows:
environment: release
@ -314,10 +322,16 @@ jobs:
name: generate-windows-cpu
- uses: actions/download-artifact@v4
with:
name: generate-windows-cuda
name: generate-windows-cuda-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps
name: generate-windows-cuda-12
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-11
- uses: actions/download-artifact@v4
with:
name: windows-cuda-deps-12
- uses: actions/download-artifact@v4
with:
name: windows-rocm-deps
@ -363,7 +377,6 @@ jobs:
- run: |
./scripts/build_linux.sh
./scripts/build_docker.sh
mv dist/deps/* dist/
- uses: actions/upload-artifact@v4
with:
name: dist-linux-amd64
@ -459,7 +472,10 @@ jobs:
merge-multiple: true
- run: |
ls -lh dist/
(cd dist; sha256sum * > sha256sum.txt)
(cd dist; find . -type f | xargs sha256sum > ../sha256sum.txt)
mv sha256sum.txt dist/
mv dist/linux-???64 .
mv dist/linux-amd64-rocm .
cat dist/sha256sum.txt
- name: Create or update Release
run: |

View file

@ -58,4 +58,4 @@ ENV OLLAMA_HOST="0.0.0.0:8080"
EXPOSE 8080
CMD ["supervisord", "-c", "/app/supervisord.conf"]
CMD ["supervisord", "-c", "/app/supervisord.conf"]

View file

@ -87,20 +87,11 @@ DialogFontSize=12
[Files]
Source: ".\app.exe"; DestDir: "{app}"; DestName: "{#MyAppExeName}" ; Flags: ignoreversion 64bit
Source: "..\ollama.exe"; DestDir: "{app}"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\ollama_runners\*"; DestDir: "{app}\ollama_runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\ollama.exe"; DestDir: "{app}\bin"; Flags: ignoreversion 64bit
Source: "..\dist\windows-{#ARCH}\lib\ollama\runners\*"; DestDir: "{app}\lib\ollama\runners"; Flags: ignoreversion 64bit recursesubdirs
Source: "..\dist\ollama_welcome.ps1"; DestDir: "{app}"; Flags: ignoreversion
Source: ".\assets\app.ico"; DestDir: "{app}"; Flags: ignoreversion
#if DirExists("..\dist\windows-amd64\cuda")
Source: "..\dist\windows-amd64\cuda\*"; DestDir: "{app}\cuda\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\oneapi")
Source: "..\dist\windows-amd64\oneapi\*"; DestDir: "{app}\oneapi\"; Flags: ignoreversion recursesubdirs
#endif
#if DirExists("..\dist\windows-amd64\rocm")
Source: "..\dist\windows-amd64\rocm\*"; DestDir: "{app}\rocm\"; Flags: ignoreversion recursesubdirs
#endif
Source: "..\dist\windows-amd64\lib\ollama\*"; DestDir: "{app}\lib\ollama\"; Flags: ignoreversion recursesubdirs
[Icons]
Name: "{group}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
@ -108,7 +99,7 @@ Name: "{userstartup}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilen
Name: "{userprograms}\{#MyAppName}"; Filename: "{app}\{#MyAppExeName}"; IconFilename: "{app}\app.ico"
[Run]
Filename: "{cmd}"; Parameters: "/C set PATH={app};%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
Filename: "{cmd}"; Parameters: "/C set PATH={app}\bin;%PATH% & ""{app}\{#MyAppExeName}"""; Flags: postinstall nowait runhidden
[UninstallRun]
; Filename: "{cmd}"; Parameters: "/C ""taskkill /im ''{#MyAppExeName}'' /f /t"; Flags: runhidden
@ -143,8 +134,8 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
[Registry]
Root: HKCU; Subkey: "Environment"; \
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}"; \
Check: NeedsAddPath('{app}')
ValueType: expandsz; ValueName: "Path"; ValueData: "{olddata};{app}\bin"; \
Check: NeedsAddPath('{app}\bin')
[Code]

View file

@ -11,6 +11,7 @@ import (
"path/filepath"
"sort"
"sync"
"syscall"
"unsafe"
"golang.org/x/sys/windows"
@ -433,7 +434,12 @@ func (t *winTray) setIcon(src string) error {
t.muNID.Lock()
defer t.muNID.Unlock()
t.nid.Icon = h
t.nid.Flags |= NIF_ICON
t.nid.Flags |= NIF_ICON | NIF_TIP
if toolTipUTF16, err := syscall.UTF16FromString(commontray.ToolTip); err == nil {
copy(t.nid.Tip[:], toolTipUTF16)
} else {
return err
}
t.nid.Size = uint32(unsafe.Sizeof(*t.nid))
return t.nid.modify()

View file

@ -61,6 +61,7 @@ const (
MIIM_SUBMENU = 0x00000004
MIM_APPLYTOSUBMENUS = 0x80000000
NIF_ICON = 0x00000002
NIF_TIP = 0x00000004
NIF_INFO = 0x00000010
NIF_MESSAGE = 0x00000001
SW_HIDE = 0

View file

@ -204,6 +204,12 @@ func tempZipFiles(path string) (string, error) {
// safetensors files might be unresolved git lfs references; skip if they are
// covers model-x-of-y.safetensors, model.fp32-x-of-y.safetensors, model.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapters.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapters.safetensors
files = append(files, st...)
} else if st, _ := glob(filepath.Join(path, "adapter_model.safetensors"), "application/octet-stream"); len(st) > 0 {
// covers adapter_model.safetensors
files = append(files, st...)
} else if pt, _ := glob(filepath.Join(path, "pytorch_model*.bin"), "application/zip"); len(pt) > 0 {
// pytorch files might also be unresolved git lfs references; skip if they are
// covers pytorch_model-x-of-y.bin, pytorch_model.fp32-x-of-y.bin, pytorch_model.bin
@ -223,6 +229,14 @@ func tempZipFiles(path string) (string, error) {
}
files = append(files, js...)
// bert models require a nested config.json
// TODO(mxyng): merge this with the glob above
js, err = glob(filepath.Join(path, "**/*.json"), "text/plain")
if err != nil {
return "", err
}
files = append(files, js...)
if tks, _ := glob(filepath.Join(path, "tokenizer.model"), "application/octet-stream"); len(tks) > 0 {
// add tokenizer.model if it exists, tokenizer.json is automatically picked up by the previous glob
// tokenizer.model might be a unresolved git lfs reference; error if it is
@ -252,6 +266,11 @@ func tempZipFiles(path string) (string, error) {
return "", err
}
zfi.Name, err = filepath.Rel(path, file)
if err != nil {
return "", err
}
zf, err := zipfile.CreateHeader(zfi)
if err != nil {
return "", err

View file

@ -7,16 +7,27 @@ import (
"io"
"io/fs"
"log/slog"
"strings"
"github.com/ollama/ollama/llm"
)
type Parameters struct {
type ModelParameters struct {
Architectures []string `json:"architectures"`
VocabSize uint32 `json:"vocab_size"`
}
func (Parameters) KV(t *Tokenizer) llm.KV {
type AdapterParameters struct {
Alpha uint32 `json:"lora_alpha"`
LoraLayers uint32 `json:"lora_layers"`
LoraParameters struct {
Rank uint32 `json:"rank"`
Alpha float32 `json:"alpha"`
Scale float32 `json:"scale"`
} `json:"lora_parameters"`
}
func (ModelParameters) KV(t *Tokenizer) llm.KV {
kv := llm.KV{
"general.file_type": uint32(1),
"general.quantization_version": uint32(2),
@ -43,40 +54,119 @@ func (Parameters) KV(t *Tokenizer) llm.KV {
return kv
}
func (Parameters) specialTokenTypes() []string {
func (p AdapterParameters) KV() llm.KV {
var alpha float32
if p.LoraParameters.Alpha == 0 {
alpha = float32(p.Alpha)
} else {
alpha = p.LoraParameters.Alpha
}
kv := llm.KV{
"adapter.lora.alpha": alpha,
"adapter.type": "lora",
"general.file_type": uint32(1),
"general.type": "adapter",
"general.version": "v0.2",
}
return kv
}
func (ModelParameters) specialTokenTypes() []string {
return []string{
"bos", "eos", "unk", "sep", "pad", "cls", "mask",
}
}
func (Parameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
func (ModelParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type Converter interface {
func (AdapterParameters) writeFile(ws io.WriteSeeker, kv llm.KV, ts []llm.Tensor) error {
return llm.WriteGGUF(ws, kv, ts)
}
type ModelConverter interface {
// KV maps parameters to LLM key-values
KV(*Tokenizer) llm.KV
// Tensors maps input tensors to LLM tensors. Model specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
// tensorName returns the LLM tensor name for a specific input name
tensorName(string) string
// specialTokenTypes returns any special token types the model uses
specialTokenTypes() []string
// writeFile writes the model to the provided io.WriteSeeker
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
type moreParser interface {
parseMore(fs.FS) error
}
type AdapterConverter interface {
// KV maps parameters to LLM key-values
KV(llm.KV) llm.KV
// Tensors maps input tensors to LLM tensors. Adapter specific modifications can be done here.
Tensors([]Tensor) []llm.Tensor
// Replacements returns a list of string pairs to replace in tensor names.
// See [strings.Replacer](https://pkg.go.dev/strings#Replacer) for details
Replacements() []string
writeFile(io.WriteSeeker, llm.KV, []llm.Tensor) error
}
func ConvertAdapter(fsys fs.FS, ws io.WriteSeeker, baseKV llm.KV) error {
bts, err := fs.ReadFile(fsys, "adapter_config.json")
if err != nil {
return err
}
var p AdapterParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
arch, ok := baseKV["general.architecture"]
if !ok {
return errors.New("architecture not set for the base model")
}
var conv AdapterConverter
switch arch {
case "llama":
conv = &llamaAdapter{}
case "gemma2":
conv = &gemma2Adapter{}
default:
return errors.New("unsupported architecture")
}
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}
if err := json.Unmarshal(bts, conv); err != nil {
return err
}
return conv.writeFile(ws, conv.KV(baseKV), conv.Tensors(ts))
}
// Convert writes an Ollama compatible model to the provided io.WriteSeeker based on configurations
// and files it finds in the input path.
// Supported input model formats include safetensors.
// Supported input tokenizers files include tokenizer.json (preferred) and tokenizer.model.
func Convert(fsys fs.FS, ws io.WriteSeeker) error {
func ConvertModel(fsys fs.FS, ws io.WriteSeeker) error {
bts, err := fs.ReadFile(fsys, "config.json")
if err != nil {
return err
}
var p Parameters
var p ModelParameters
if err := json.Unmarshal(bts, &p); err != nil {
return err
}
@ -85,16 +175,20 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return errors.New("unknown architecture")
}
var conv Converter
var conv ModelConverter
switch p.Architectures[0] {
case "LlamaForCausalLM", "MistralForCausalLM":
conv = &llama{}
conv = &llamaModel{}
case "MixtralForCausalLM":
conv = &mixtral{}
conv = &mixtralModel{}
case "GemmaForCausalLM":
conv = &gemma{}
conv = &gemmaModel{}
case "Gemma2ForCausalLM":
conv = &gemma2Model{}
case "Phi3ForCausalLM":
conv = &phi3{}
conv = &phi3Model{}
case "BertModel":
conv = &bertModel{}
default:
return errors.New("unsupported architecture")
}
@ -103,6 +197,12 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
return err
}
if t, ok := conv.(moreParser); ok {
if err := t.parseMore(fsys); err != nil {
return err
}
}
t, err := parseTokenizer(fsys, conv.specialTokenTypes())
if err != nil {
return err
@ -119,7 +219,7 @@ func Convert(fsys fs.FS, ws io.WriteSeeker) error {
slog.Debug("vocabulary", "size", len(t.Vocabulary.Tokens))
}
ts, err := parseTensors(fsys)
ts, err := parseTensors(fsys, strings.NewReplacer(conv.Replacements()...))
if err != nil {
return err
}

174
convert/convert_bert.go Normal file
View file

@ -0,0 +1,174 @@
package convert
import (
"cmp"
"encoding/json"
"io/fs"
"path/filepath"
"slices"
"strings"
"github.com/ollama/ollama/llm"
)
type bertModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
NCtx uint32 `json:"n_ctx"`
HiddenSize uint32 `json:"hidden_size"`
NEmbd uint32 `json:"n_embd"`
IntermediateSize uint32 `json:"intermediate_size"`
NInner uint32 `json:"n_inner"`
NumAttentionHeads uint32 `json:"num_attention_heads"`
NHead uint32 `json:"n_head"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
LayerNormEPS float32 `json:"layer_norm_eps"`
LayerNormEpsilon float32 `json:"layer_norm_epsilon"`
NormEpsilon float32 `json:"norm_epsilon"`
PoolingType uint32
}
var (
_ ModelConverter = (*bertModel)(nil)
_ moreParser = (*bertModel)(nil)
)
func (p *bertModel) parseMore(fsys fs.FS) error {
bts, err := fs.ReadFile(fsys, "modules.json")
if err != nil {
return err
}
var modules []struct {
Type string `json:"type"`
Path string `json:"path"`
}
if err := json.Unmarshal(bts, &modules); err != nil {
return err
}
var pooling string
for _, m := range modules {
if m.Type == "sentence_transformers.models.Pooling" {
pooling = m.Path
break
}
}
if pooling != "" {
bts, err := fs.ReadFile(fsys, filepath.Join(pooling, "config.json"))
if err != nil {
return err
}
var pc struct {
PoolingModeCLSToken bool `json:"pooling_mode_cls_token"`
PoolingModeMeanTokens bool `json:"pooling_mode_mean_tokens"`
}
if err := json.Unmarshal(bts, &pc); err != nil {
return err
}
if pc.PoolingModeMeanTokens {
p.PoolingType = 1
} else if pc.PoolingModeCLSToken {
p.PoolingType = 2
}
}
return nil
}
func (p *bertModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "bert"
kv["bert.attention.causal"] = false
kv["bert.pooling_type"] = p.PoolingType
kv["bert.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
if contextLength := cmp.Or(p.MaxPositionEmbeddings, p.NCtx); contextLength > 0 {
kv["bert.context_length"] = contextLength
}
if embeddingLength := cmp.Or(p.HiddenSize, p.NEmbd); embeddingLength > 0 {
kv["bert.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
}
if feedForwardLength := cmp.Or(p.IntermediateSize, p.NInner); feedForwardLength > 0 {
kv["bert.feed_forward_length"] = cmp.Or(p.IntermediateSize, p.NInner)
}
if headCount := cmp.Or(p.NumAttentionHeads, p.NHead); headCount > 0 {
kv["bert.attention.head_count"] = cmp.Or(p.NumAttentionHeads, p.NHead)
}
if layerNormEpsilon := cmp.Or(p.LayerNormEPS, p.LayerNormEpsilon, p.NormEpsilon); layerNormEpsilon > 0 {
kv["bert.attention.layer_norm_epsilon"] = layerNormEpsilon
}
kv["tokenizer.ggml.model"] = "bert"
kv["tokenizer.ggml.token_type_count"] = uint32(2)
// convert to phantom space tokens
for i, e := range t.Tokens {
if strings.HasPrefix(e, "[") && strings.HasSuffix(e, "]") {
// noop
} else if strings.HasPrefix(e, "##") {
t.Tokens[i] = e[2:]
} else {
t.Tokens[i] = "\u2581" + e
}
}
kv["tokenizer.ggml.tokens"] = t.Tokens
return kv
}
func (p *bertModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
if slices.Contains([]string{
"embeddings.position_ids",
"pooler.dense.weight",
"pooler.dense.bias",
}, t.Name()) {
continue
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (bertModel) Replacements() []string {
return []string{
"encoder.layer", "blk",
"encoder.layers", "blk",
"embeddings.word_embeddings", "token_embd",
"embeddings.token_type_embeddings", "token_types",
"embeddings.LayerNorm", "token_embd_norm",
"embeddings.position_embeddings", "position_embd",
"attention.self.query", "attn_q",
"attention.self.key", "attn_k",
"attention.self.value", "attn_v",
"attention.output.dense", "attn_output",
"attention.output.LayerNorm", "attn_output_norm",
"intermediate.dense", "ffn_up",
"output.dense", "ffn_down",
"output.LayerNorm", "layer_output_norm",
}
}

View file

@ -9,8 +9,8 @@ import (
"github.com/ollama/ollama/llm"
)
type gemma struct {
Parameters
type gemmaModel struct {
ModelParameters
MaxPositionEmbeddings uint32 `json:"max_position_embeddings"`
HiddenSize uint32 `json:"hidden_size"`
HiddenLayers uint32 `json:"num_hidden_layers"`
@ -21,12 +21,11 @@ type gemma struct {
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*gemma)(nil)
var _ ModelConverter = (*gemmaModel)(nil)
func (p *gemma) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *gemmaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma"
kv["general.name"] = "gemma"
kv["gemma.context_length"] = p.MaxPositionEmbeddings
kv["gemma.embedding_length"] = p.HiddenSize
kv["gemma.block_count"] = p.HiddenLayers
@ -43,16 +42,15 @@ func (p *gemma) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
func (p *gemmaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "_norm.weight") {
if strings.HasSuffix(t.Name(), "_norm.weight") {
t.SetRepacker(p.addOne)
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@ -62,8 +60,8 @@ func (p *gemma) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *gemma) tensorName(n string) string {
return strings.NewReplacer(
func (p *gemmaModel) Replacements() []string {
return []string{
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
"model.layers", "blk",
@ -76,11 +74,10 @@ func (p *gemma) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
"block_sparse_moe.gate", "ffn_inp",
).Replace(n)
}
}
func (*gemma) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
func (*gemmaModel) addOne(_ string, data []float32, shape []uint64) ([]float32, error) {
n := tensor.New(tensor.WithShape(int(shape[0])), tensor.WithBacking(data))
ones := tensor.Ones(tensor.Float32, int(shape[0]))

43
convert/convert_gemma2.go Normal file
View file

@ -0,0 +1,43 @@
package convert
import (
"github.com/ollama/ollama/llm"
)
type gemma2Model struct {
gemmaModel
SlidingWindow uint32 `json:"sliding_window"`
AttentionLogitSoftcap float32 `json:"attn_logit_softcapping"`
FinalLogitSoftcap float32 `json:"final_logit_softcapping"`
}
func (p *gemma2Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "gemma2"
kv["gemma2.context_length"] = p.MaxPositionEmbeddings
kv["gemma2.embedding_length"] = p.HiddenSize
kv["gemma2.block_count"] = p.HiddenLayers
kv["gemma2.feed_forward_length"] = p.IntermediateSize
kv["gemma2.attention.head_count"] = p.NumAttentionHeads
kv["gemma2.attention.head_count_kv"] = p.NumKeyValueHeads
kv["gemma2.attention.layer_norm_rms_epsilon"] = p.RMSNormEPS
kv["gemma2.attention.key_length"] = p.HeadDim
kv["gemma2.attention.value_length"] = p.HeadDim
kv["gemma2.attention.sliding_window"] = p.SlidingWindow
kv["gemma2.attn_logit_softcapping"] = p.AttentionLogitSoftcap
kv["gemma2.final_logit_softcapping"] = p.FinalLogitSoftcap
kv["tokenizer.ggml.eot_token_id"] = uint32(107)
kv["tokenizer.ggml.middle_token_id"] = uint32(68)
kv["tokenizer.ggml.prefix_token_id"] = uint32(67)
kv["tokenizer.ggml.suffix_token_id"] = uint32(69)
return kv
}
func (p *gemma2Model) Replacements() []string {
return append(
p.gemmaModel.Replacements(),
"post_attention_layernorm", "post_attention_norm",
"pre_feedforward_layernorm", "ffn_norm",
"post_feedforward_layernorm", "post_ffw_norm",
)
}

View file

@ -0,0 +1,91 @@
package convert
import (
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type gemma2Adapter struct {
AdapterParameters
}
var _ AdapterConverter = (*gemma2Adapter)(nil)
func (p *gemma2Adapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "gemma2"
return kv
}
func (p *gemma2Adapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
})
}
return out
}
func (p *gemma2Adapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *gemma2Adapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View file

@ -3,6 +3,7 @@ package convert
import (
"cmp"
"fmt"
"math"
"strings"
"github.com/pdevine/tensor"
@ -11,8 +12,8 @@ import (
"github.com/ollama/ollama/llm"
)
type llama struct {
Parameters
type llamaModel struct {
ModelParameters
NLayers uint32 `json:"n_layers"`
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayer uint32 `json:"n_layer"`
@ -27,8 +28,14 @@ type llama struct {
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
RopeTheta float32 `json:"rope_theta"`
RopeScaling struct {
Type string `json:"type"`
Factor float32 `json:"factor"`
Type string `json:"type"`
RopeType string `json:"rope_type"`
Factor float32 `json:"factor"`
LowFrequencyFactor float32 `json:"low_freq_factor"`
HighFrequencyFactor float32 `json:"high_freq_factor"`
OriginalMaxPositionalEmbeddings uint32 `json:"original_max_positional_embeddings"`
factors ropeFactor
} `json:"rope_scaling"`
RMSNormEPS float32 `json:"rms_norm_eps"`
LayerNormEPS float32 `json:"layer_norm_eps"`
@ -37,12 +44,11 @@ type llama struct {
HeadDim uint32 `json:"head_dim"`
}
var _ Converter = (*llama)(nil)
var _ ModelConverter = (*llamaModel)(nil)
func (p *llama) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *llamaModel) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "llama"
kv["general.name"] = "llama"
kv["llama.vocab_size"] = p.VocabSize
kv["llama.block_count"] = cmp.Or(p.NLayers, p.NumHiddenLayers, p.NLayer)
@ -71,6 +77,27 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
if p.RopeScaling.Type == "linear" {
kv["llama.rope.scaling.type"] = p.RopeScaling.Type
kv["llama.rope.scaling.factor"] = p.RopeScaling.Factor
} else if p.RopeScaling.RopeType == "llama3" {
dim := p.HiddenSize / p.NumAttentionHeads
for i := uint32(0); i < dim; i += 2 {
factor := cmp.Or(p.RopeScaling.Factor, 8.0)
factorLow := cmp.Or(p.RopeScaling.LowFrequencyFactor, 1.0)
factorHigh := cmp.Or(p.RopeScaling.HighFrequencyFactor, 4.0)
original := cmp.Or(p.RopeScaling.OriginalMaxPositionalEmbeddings, 8192)
lambdaLow := float32(original) / factorLow
lambdaHigh := float32(original) / factorHigh
lambda := 2 * math.Pi * math.Pow(float64(p.RopeTheta), float64(i)/float64(dim))
if lambda < float64(lambdaHigh) {
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0)
} else if lambda > float64(lambdaLow) {
p.RopeScaling.factors = append(p.RopeScaling.factors, factor)
} else {
smooth := (float32(original)/float32(lambda) - factorLow) / (factorHigh - factorLow)
p.RopeScaling.factors = append(p.RopeScaling.factors, 1.0/((1-smooth)/factor+smooth))
}
}
}
if p.NumKeyValueHeads > 0 {
@ -93,17 +120,26 @@ func (p *llama) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
func (p *llamaModel) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
if p.RopeScaling.factors != nil {
out = append(out, llm.Tensor{
Name: "rope_freqs.weight",
Kind: 0,
Shape: []uint64{uint64(len(p.RopeScaling.factors))},
WriterTo: p.RopeScaling.factors,
})
}
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasSuffix(name, "attn_q.weight") ||
strings.HasSuffix(name, "attn_k.weight") {
if strings.HasSuffix(t.Name(), "attn_q.weight") ||
strings.HasSuffix(t.Name(), "attn_k.weight") {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@ -113,8 +149,8 @@ func (p *llama) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *llama) tensorName(n string) string {
return strings.NewReplacer(
func (p *llamaModel) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@ -128,21 +164,19 @@ func (p *llama) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
// mixtral
"block_sparse_moe.gate", "ffn_gate_inp",
).Replace(n)
}
}
func (p *llama) repack(name string, data []float32, shape []uint64) ([]float32, error) {
func (p *llamaModel) repack(name string, data []float32, shape []uint64) ([]float32, error) {
var dims []int
for _, dim := range shape {
dims = append(dims, int(dim))
}
var heads uint32
if strings.HasSuffix(name, "q_proj.weight") {
if strings.HasSuffix(name, "attn_q.weight") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "k_proj.weight") {
} else if strings.HasSuffix(name, "attn_k.weight") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return nil, fmt.Errorf("unknown tensor for repack: %s", name)

View file

@ -0,0 +1,169 @@
package convert
import (
"cmp"
"strings"
"github.com/pdevine/tensor"
"github.com/pdevine/tensor/native"
"github.com/ollama/ollama/llm"
)
type llamaAdapter struct {
AdapterParameters
NumAttentionHeads uint32 `json:"num_attention_heads"`
NumKeyValueHeads uint32 `json:"num_key_value_heads"`
}
var _ AdapterConverter = (*llamaAdapter)(nil)
func (p *llamaAdapter) KV(baseKV llm.KV) llm.KV {
kv := p.AdapterParameters.KV()
kv["general.architecture"] = "llama"
kv["llama.attention.head_count"] = baseKV["llama.attention.head_count"]
kv["llama.attention.head_count_kv"] = baseKV["llama.attention.head_count_kv"]
p.NumAttentionHeads = baseKV["llama.attention.head_count"].(uint32)
return kv
}
func (p *llamaAdapter) Tensors(ts []Tensor) []llm.Tensor {
var out []llm.Tensor
for _, t := range ts {
shape := t.Shape()
if (strings.HasSuffix(t.Name(), "weight.lora_a") && shape[0] > shape[1]) ||
(strings.HasSuffix(t.Name(), "weight.lora_b") && shape[0] < shape[1]) {
shape[0], shape[1] = shape[1], shape[0]
t.SetRepacker(p.repackAndTranspose)
} else {
t.SetRepacker(p.repack)
}
out = append(out, llm.Tensor{
Name: t.Name(),
Kind: t.Kind(),
Shape: shape,
WriterTo: t,
})
}
return out
}
func (p *llamaAdapter) Replacements() []string {
return []string{
"base_model.model.", "",
"model.layers", "blk",
"self_attn.q_proj", "attn_q",
"self_attn.k_proj", "attn_k",
"self_attn.v_proj", "attn_v",
"self_attn.o_proj", "attn_output",
"mlp.gate_proj", "ffn_gate",
"mlp.down_proj", "ffn_down",
"mlp.up_proj", "ffn_up",
"lora_A.weight", "weight.lora_a",
"lora_B.weight", "weight.lora_b",
"lora_a", "weight.lora_a",
"lora_b", "weight.lora_b",
}
}
func (p *llamaAdapter) repack(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
} else {
return data, nil
}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}
func (p *llamaAdapter) repackAndTranspose(name string, data []float32, shape []uint64) ([]float32, error) {
dims := []int{int(shape[1]), int(shape[0])}
n := tensor.New(tensor.WithShape(dims...), tensor.WithBacking(data))
var heads uint32
if strings.HasSuffix(name, "attn_q.weight.lora_a") {
heads = p.NumAttentionHeads
} else if strings.HasSuffix(name, "attn_k.weight.lora_a") {
heads = cmp.Or(p.NumKeyValueHeads, p.NumAttentionHeads)
}
if heads > 0 {
if err := n.Reshape(append([]int{int(heads), 2, dims[0] / int(heads) / 2}, dims[1:]...)...); err != nil {
return nil, err
}
if err := n.T(0, 2, 1, 3); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
}
if err := n.T(1, 0); err != nil {
return nil, err
}
if err := n.Reshape(dims...); err != nil {
return nil, err
}
if err := n.Transpose(); err != nil {
return nil, err
}
ts, err := native.SelectF32(n, 1)
if err != nil {
return nil, err
}
var f32s []float32
for _, t := range ts {
f32s = append(f32s, t...)
}
return f32s, nil
}

View file

@ -9,16 +9,14 @@ import (
"github.com/ollama/ollama/llm"
)
type mixtral struct {
llama
type mixtralModel struct {
llamaModel
NumLocalExperts uint32 `json:"num_local_experts"`
NumExpertsPerToken uint32 `json:"num_experts_per_tok"`
}
var _ Converter = (*mixtral)(nil)
func (p *mixtral) KV(t *Tokenizer) llm.KV {
kv := p.llama.KV(t)
func (p *mixtralModel) KV(t *Tokenizer) llm.KV {
kv := p.llamaModel.KV(t)
if p.NumLocalExperts > 0 {
kv["llama.expert_count"] = p.NumLocalExperts
@ -31,7 +29,7 @@ func (p *mixtral) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
func (p *mixtralModel) Tensors(ts []Tensor) []llm.Tensor {
oldnew := []string{
"model.layers", "blk",
"w1", "ffn_gate_exps",
@ -69,7 +67,14 @@ func (p *mixtral) Tensors(ts []Tensor) []llm.Tensor {
})
}
return append(out, p.llama.Tensors(ts)...)
return append(out, p.llamaModel.Tensors(ts)...)
}
func (p *mixtralModel) Replacements() []string {
return append(
p.llamaModel.Replacements(),
"block_sparse_moe.gate", "ffn_gate_inp",
)
}
type experts []Tensor

View file

@ -11,8 +11,8 @@ import (
"github.com/ollama/ollama/llm"
)
type phi3 struct {
Parameters
type phi3Model struct {
ModelParameters
NumHiddenLayers uint32 `json:"num_hidden_layers"`
NLayers uint32 `json:"n_layers"`
HiddenSize uint32 `json:"hidden_size"`
@ -35,12 +35,11 @@ type phi3 struct {
SlidingWindow uint32 `json:"sliding_window"`
}
var _ Converter = (*phi3)(nil)
var _ ModelConverter = (*phi3Model)(nil)
func (p *phi3) KV(t *Tokenizer) llm.KV {
kv := p.Parameters.KV(t)
func (p *phi3Model) KV(t *Tokenizer) llm.KV {
kv := p.ModelParameters.KV(t)
kv["general.architecture"] = "phi3"
kv["general.name"] = "phi3"
kv["phi3.context_length"] = p.MaxPositionEmbeddings
kv["phi3.embedding_length"] = cmp.Or(p.HiddenSize, p.NEmbd)
kv["phi3.feed_forward_length"] = p.IntermediateSize
@ -69,13 +68,12 @@ func (p *phi3) KV(t *Tokenizer) llm.KV {
return kv
}
func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
func (p *phi3Model) Tensors(ts []Tensor) []llm.Tensor {
var addRopeFactors sync.Once
out := make([]llm.Tensor, 0, len(ts)+2)
for _, t := range ts {
name := p.tensorName(t.Name())
if strings.HasPrefix(name, "blk.0.") {
if strings.HasPrefix(t.Name(), "blk.0.") {
addRopeFactors.Do(func() {
out = append(out, llm.Tensor{
Name: "rope_factors_long.weight",
@ -92,7 +90,7 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
}
out = append(out, llm.Tensor{
Name: name,
Name: t.Name(),
Kind: t.Kind(),
Shape: t.Shape(),
WriterTo: t,
@ -102,8 +100,8 @@ func (p *phi3) Tensors(ts []Tensor) []llm.Tensor {
return out
}
func (p *phi3) tensorName(n string) string {
return strings.NewReplacer(
func (p *phi3Model) Replacements() []string {
return []string{
"lm_head", "output",
"model.embed_tokens", "token_embd",
"model.norm", "output_norm",
@ -114,7 +112,7 @@ func (p *phi3) tensorName(n string) string {
"mlp.down_proj", "ffn_down",
"mlp.gate_up_proj", "ffn_up",
"post_attention_layernorm", "ffn_norm",
).Replace(n)
}
}
type ropeFactor []float32

View file

@ -1,7 +1,9 @@
package convert
import (
"bytes"
"crypto/sha256"
"encoding/binary"
"encoding/hex"
"encoding/json"
"flag"
@ -29,7 +31,7 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
}
defer f.Close()
if err := Convert(fsys, f); err != nil {
if err := ConvertModel(fsys, f); err != nil {
t.Fatal(err)
}
@ -51,6 +53,34 @@ func convertFull(t *testing.T, fsys fs.FS) (*os.File, llm.KV, llm.Tensors) {
return r, m.KV(), m.Tensors()
}
func generateResultsJSON(t *testing.T, f *os.File, kv llm.KV, tensors llm.Tensors) map[string]string {
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
return actual
}
func TestMain(m *testing.M) {
var level slog.Level
flag.TextVar(&level, "level", slog.LevelInfo, "log level")
@ -62,11 +92,14 @@ func TestMain(m *testing.M) {
func TestConvertFull(t *testing.T) {
cases := []string{
"Meta-Llama-3-8B-Instruct",
"Meta-Llama-3.1-8B-Instruct",
"Mistral-7B-Instruct-v0.2",
"Mixtral-8x7B-Instruct-v0.1",
"gemma-2b-it",
// microsoft/Phi-3-mini-128-instruct@d548c233192db00165d842bf8edff054bb3212f8
"Phi-3-mini-128k-instruct",
"all-MiniLM-L6-v2",
"gemma-2-9b-it",
}
for i := range cases {
@ -82,29 +115,7 @@ func TestConvertFull(t *testing.T) {
}
f, kv, tensors := convertFull(t, os.DirFS(p))
actual := make(map[string]string)
for k, v := range kv {
if s, ok := v.(json.Marshaler); !ok {
actual[k] = fmt.Sprintf("%v", v)
} else {
bts, err := json.Marshal(s)
if err != nil {
t.Fatal(err)
}
actual[k] = fmt.Sprintf("%x", sha256.Sum256(bts))
}
}
for _, tensor := range tensors.Items {
sha256sum := sha256.New()
sr := io.NewSectionReader(f, int64(tensors.Offset+tensor.Offset), int64(tensor.Size()))
if _, err := io.Copy(sha256sum, sr); err != nil {
t.Fatal(err)
}
actual[tensor.Name] = hex.EncodeToString(sha256sum.Sum(nil))
}
actual := generateResultsJSON(t, f, kv, tensors)
expectFile, err := os.Open(filepath.Join("testdata", fmt.Sprintf("%s.json", tt)))
if err != nil {
@ -128,3 +139,209 @@ func TestConvertFull(t *testing.T) {
})
}
}
func TestConvertAdapter(t *testing.T) {
type AdapterCase struct {
Name string
BaseKV map[string]any
Expected map[string]string
}
cases := []AdapterCase{
{
Name: "discollama",
BaseKV: map[string]any{
"general.architecture": "llama",
"llama.attention.head_count": uint32(32),
"llama.attention.head_count_kv": uint32(8),
},
Expected: map[string]string{
"general.architecture": "llama",
"general.file_type": "1",
"general.parameter_count": "106496",
"general.type": "adapter",
"general.version": "v0.2",
"adapter.lora.alpha": "16",
"adapter.type": "lora",
"llama.attention.head_count": "32",
"llama.attention.head_count_kv": "8",
"blk.31.attn_q.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_q.weight.lora_b": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_a": "0eb3318b02cd313429bcc7621b539fdbb10240fea190c56c9e5f93fcd37a4e50",
"blk.31.attn_v.weight.lora_b": "071dcafe89df065d6e1c935ecb8fdf6479b3c202eb912e7da938597673ff5857",
},
},
}
for _, c := range cases {
t.Run(c.Name, func(t *testing.T) {
t.Parallel()
f, err := os.CreateTemp(t.TempDir(), "f16")
if err != nil {
t.Fatal(err)
}
defer f.Close()
tempDir := t.TempDir()
generateLoraTestData(t, tempDir)
if err = ConvertAdapter(os.DirFS(tempDir), f, c.BaseKV); err != nil {
t.Fatal(err)
}
r, err := os.Open(f.Name())
if err != nil {
t.Fatal(err)
}
defer r.Close()
m, _, err := llm.DecodeGGML(r, math.MaxInt)
if err != nil {
t.Fatal(err)
}
if _, err := r.Seek(0, io.SeekStart); err != nil {
t.Fatal(err)
}
actual := generateResultsJSON(t, r, m.KV(), m.Tensors())
keys := maps.Keys(c.Expected)
slices.Sort(keys)
for _, k := range keys {
if v, ok := actual[k]; !ok {
t.Errorf("missing %s", k)
} else if v != c.Expected[k] {
t.Errorf("unexpected %s: want %s, got %s", k, c.Expected[k], v)
}
}
})
}
}
func generateLoraTestData(t *testing.T, tempDir string) {
type tensorData struct {
Offsets []int `json:"data_offsets"`
Type string `json:"dtype"`
Shape []int `json:"shape"`
}
offset := 4096 * 8 * 4
td := map[string]*tensorData{"__metadata__": nil}
td["model.layers.31.self_attn.q_proj.lora_a"] = &tensorData{
Offsets: []int{0, offset},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.q_proj.lora_b"] = &tensorData{
Offsets: []int{offset, offset * 2},
Type: "F32",
Shape: []int{8, 4096},
}
td["model.layers.31.self_attn.v_proj.lora_a"] = &tensorData{
Offsets: []int{offset * 2, offset * 3},
Type: "F32",
Shape: []int{4096, 8},
}
td["model.layers.31.self_attn.v_proj.lora_b"] = &tensorData{
Offsets: []int{offset * 3, offset*3 + 8*1024*4},
Type: "F32",
Shape: []int{8, 1024},
}
data, err := json.Marshal(td)
if err != nil {
t.Fatal(err)
}
var buf bytes.Buffer
l := int64(len(data))
err = binary.Write(&buf, binary.LittleEndian, l)
if err != nil {
t.Fatal(err)
}
_, err = buf.Write(data)
if err != nil {
t.Fatal(err)
}
// write some data for the tensors
ones := make([]float32, 4096*8)
for i := range ones {
ones[i] = float32(1)
}
for range 3 {
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
}
ones = make([]float32, 1024*8)
for i := range ones {
ones[i] = float32(1)
}
err = binary.Write(&buf, binary.LittleEndian, ones)
if err != nil {
t.Fatal(err)
}
fdata, err := os.Create(filepath.Join(tempDir, "adapters.safetensors"))
if err != nil {
t.Fatal(err)
}
defer fdata.Close()
_, err = fdata.Write(buf.Bytes())
if err != nil {
t.Fatal(err)
}
configData := `
{
"adapter_path": "adapters-test",
"batch_size": 8,
"config": "config-tiny.json",
"data": "../discollama-completion",
"grad_checkpoint": null,
"iters": 1000,
"learning_rate": 1e-05,
"lora_layers": 1,
"lora_parameters": {
"rank": 8,
"alpha": 16,
"dropout": 0.0,
"scale": 2.0
},
"lr_schedule": null,
"max_seq_length": 2048,
"model": "/Users/pdevine/git/Meta-Llama-3-8B-Instruct",
"resume_adapter_file": null,
"save_every": 100,
"seed": 0,
"steps_per_eval": 200,
"steps_per_report": 10,
"test": false,
"test_batches": 500,
"train": true,
"use_dora": false,
"val_batches": 25
}
`
f, err := os.Create(filepath.Join(tempDir, "adapter_config.json"))
if err != nil {
t.Fatal(err)
}
defer f.Close()
_, err = f.WriteString(configData)
if err != nil {
t.Fatal(err)
}
}

View file

@ -35,7 +35,9 @@ const (
)
func (t tensorBase) Kind() uint32 {
if strings.HasSuffix(t.name, ".block_sparse_moe.gate.weight") {
if strings.HasSuffix(t.name, ".ffn_gate_inp.weight") ||
t.name == "token_types.weight" {
// these tensors are always F32
return 0
}
@ -55,13 +57,15 @@ func (t *tensorBase) SetRepacker(fn repacker) {
type repacker func(string, []float32, []uint64) ([]float32, error)
func parseTensors(fsys fs.FS) ([]Tensor, error) {
func parseTensors(fsys fs.FS, replacer *strings.Replacer) ([]Tensor, error) {
patterns := []struct {
Pattern string
Func func(fs.FS, ...string) ([]Tensor, error)
Func func(fs.FS, *strings.Replacer, ...string) ([]Tensor, error)
}{
{"model-*-of-*.safetensors", parseSafetensors},
{"model.safetensors", parseSafetensors},
{"adapters.safetensors", parseSafetensors},
{"adapter_model.safetensors", parseSafetensors},
{"pytorch_model-*-of-*.bin", parseTorch},
{"pytorch_model.bin", parseTorch},
{"consolidated.*.pth", parseTorch},
@ -74,7 +78,7 @@ func parseTensors(fsys fs.FS) ([]Tensor, error) {
}
if len(matches) > 0 {
return pattern.Func(fsys, matches...)
return pattern.Func(fsys, replacer, matches...)
}
}

View file

@ -8,6 +8,7 @@ import (
"io"
"io/fs"
"slices"
"strings"
"github.com/d4l3k/go-bfloat16"
"github.com/x448/float16"
@ -20,7 +21,7 @@ type safetensorMetadata struct {
Offsets []int64 `json:"data_offsets"`
}
func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
func parseSafetensors(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
f, err := fsys.Open(p)
@ -56,7 +57,7 @@ func parseSafetensors(fsys fs.FS, ps ...string) ([]Tensor, error) {
offset: safetensorsPad(n, value.Offsets[0]),
size: safetensorsPad(n, value.Offsets[1]) - safetensorsPad(n, value.Offsets[0]),
tensorBase: &tensorBase{
name: key,
name: replacer.Replace(key),
shape: value.Shape,
},
})

View file

@ -3,12 +3,13 @@ package convert
import (
"io"
"io/fs"
"strings"
"github.com/nlpodyssey/gopickle/pytorch"
"github.com/nlpodyssey/gopickle/types"
)
func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
func parseTorch(fsys fs.FS, replacer *strings.Replacer, ps ...string) ([]Tensor, error) {
var ts []Tensor
for _, p := range ps {
pt, err := pytorch.Load(p)
@ -27,7 +28,7 @@ func parseTorch(fsys fs.FS, ps ...string) ([]Tensor, error) {
ts = append(ts, torch{
storage: t.(*pytorch.Tensor).Source,
tensorBase: &tensorBase{
name: k.(string),
name: replacer.Replace(k.(string)),
shape: shape,
},
})

View file

@ -0,0 +1,3 @@
{
"rope_freqs.weight": "80fd5efb2f729381785b293a091a268cfeceb0079167f6ece9b07070e662b222"
}

124
convert/testdata/all-MiniLM-L6-v2.json vendored Normal file
View file

@ -0,0 +1,124 @@
{
"general.architecture": "bert",
"general.file_type": "1",
"general.quantization_version": "2",
"bert.attention.causal": "false",
"bert.attention.head_count": "12",
"bert.attention.layer_norm_epsilon": "1e-12",
"bert.block_count": "6",
"bert.context_length": "512",
"bert.embedding_length": "384",
"bert.feed_forward_length": "1536",
"bert.pooling_type": "1",
"tokenizer.ggml.model": "bert",
"tokenizer.ggml.padding_token_id": "0",
"tokenizer.ggml.unknown_token_id": "100",
"tokenizer.ggml.cls_token_id": "101",
"tokenizer.ggml.seperator_token_id": "102",
"tokenizer.ggml.mask_token_id": "103",
"tokenizer.ggml.token_type_count": "2",
"tokenizer.ggml.scores": "6db964fe67338aca57790481a390121ff3dd643eebe49f7dd308029ad99abb6f",
"tokenizer.ggml.token_type": "98d247c5404b6b18f05f133b92dd56edf6efefefac326794b00d7b351f6c5aa1",
"tokenizer.ggml.tokens": "9efe405e229a45ff9916f54c475d151d2200cd2ab0006f347abfb069cf096c86",
"token_embd.weight": "8c1ee80a9ea4f65aa385ba30112010068af3d209bebc6e149d3d4589c2cd0a5a",
"position_embd.weight": "6c516f0b1c4e2388ab90394dd80ad69e4e4509b890982fc3408108ae66210eb6",
"token_types.weight": "f879f8e422ed211948f28b560d3c5e17aae7993f063b51196a28cf5c0fb3da21",
"token_embd_norm.weight": "75076e095d717aab96f8b6beeee503c27940d9a76f2b891a0e3de72f8a6043e4",
"token_embd_norm.bias": "298735285ffe944e1bf03e5d35c7280326b85cf121bde9874f1af5dc51ab939d",
"blk.0.attn_q.weight": "ab0923ce4c1549175112dcdfcc860fe30137f991e03ea6857fb5993670adaf6c",
"blk.0.attn_q.bias": "a3ec29551dabf976e1d34256b8ab5ab7b758f3ed9742c3cafdbd984d5441df62",
"blk.0.attn_k.weight": "4c1038a6d035c3e9ffed7fa672b614627814752503755fbad0cfb76a41ad71ba",
"blk.0.attn_k.bias": "e0363930eb588d91816aa3d230bb03b6e2551c165117b80b8d60397413819ef9",
"blk.0.attn_v.weight": "425e2e53e3f00ce98d29c3e6a161eb55d3e6ae0d96fdb9f6242d1c4fd6eef4b3",
"blk.0.attn_v.bias": "6579173a1e65ee124fbd0bd53cbdca4225515b4f2c5f18fb1bfd000f5978f9bb",
"blk.0.attn_output.weight": "a6d70a08cd7164de5d12af65d86d657c3db35aaecde778b2b3fda9193c4c9802",
"blk.0.attn_output.bias": "2b8d12c4f9a9c5bfaa29c597839568f6e0525cb41eeaf64ddeb6bd84dfeb9701",
"blk.0.attn_output_norm.weight": "bbe6e502a473228b525aeed26cc31b7db123ad63bdc5a6eebac6ea70b8b51d62",
"blk.0.attn_output_norm.bias": "36eaacaf0007c5c62daea97aab0115390c0682914f78482e37eb76885f4b7a50",
"blk.0.ffn_up.weight": "24654561c76ce387d125759ba843f06b904ef721fcceaeff6ccc62180a48e874",
"blk.0.ffn_up.bias": "fd3f0126aa1d95768fa60eb6f4ab8a2763cfcb7e5405f35b92353031d86f4d34",
"blk.0.ffn_down.weight": "97a829763a6a5bf3329ceb4d39c424ba4787d61653a5b0bbd1f84782e4d4e0ca",
"blk.0.ffn_down.bias": "7aa980c30ae8b4ee7f69df28808dbf5c431f56ccc4a80340f644a0419f16c054",
"blk.0.layer_output_norm.weight": "ef30dad4c2a083ae1ff5039a2a6cda60ecc89bf1e486a6f8c0d15f50589603f8",
"blk.0.layer_output_norm.bias": "8b1b77e67568b1bce43fc476de1b177c53ff688d66beb66995e8eb3dc290da8a",
"blk.1.attn_q.weight": "284331622a1f6f9b87ccee4f652bd66a394ca493c4d93be4d1844e4f6159ad10",
"blk.1.attn_q.bias": "e24ebd4860330e08f6bfdd077a82db0bee33f4c8846cf1db26327a34754c7069",
"blk.1.attn_k.weight": "729dd0d555544b5bd0f7580b3c8b384256b974605f0e7487b95f295aa032997d",
"blk.1.attn_k.bias": "2aa51a828a858f35473f54477583fea54ce2ccc34ea60fbd1d228fbe9bca827f",
"blk.1.attn_v.weight": "6be304671cc311d5ca5c103f2b51467ee800c589bc5b8101e09ff5aed1f68c21",
"blk.1.attn_v.bias": "43bcbab78a8819e07f723bc9e5b737b71e87a7594f15234e882b63e327a64199",
"blk.1.attn_output.weight": "15ec8a1a12b26c9976445308a09f748ab0e4bef0f583d13ab08c3129f8738d73",
"blk.1.attn_output.bias": "dac2146f4baa6ed16f6c0dc7443831fb7ec79bedcceafd80d1a4b628a1bb072d",
"blk.1.attn_output_norm.weight": "d2151eb33bffac536787a4c9a5d2b31c7a80b17c4611877842a3cce2cd6e98d8",
"blk.1.attn_output_norm.bias": "31e1b779716dafb855d2cf5631ee168a0ccf372eb9c6ea6091f66fa97a9b9d2d",
"blk.1.ffn_up.weight": "a57547fc3fc3b77406f5cdcb0c87af9bc184701f175c39c1f35297826fce3cc7",
"blk.1.ffn_up.bias": "123be6d541d086202913c75d878c54d59a749f3af7b58f7ef9eb9e7c62a24c9a",
"blk.1.ffn_down.weight": "cfdb79788377e5cbded8790cd41b9e66c397ecab75474071fcd7cf32d30f9613",
"blk.1.ffn_down.bias": "bcb58315519a573097960891c9ae41cf4c685ab78c3e0e77471471758a7eae88",
"blk.1.layer_output_norm.weight": "819b554271452bfb1d84c2603b90377b2e41a0ac1e3aa8b417ccf9dce63375bd",
"blk.1.layer_output_norm.bias": "47a3433ac27f5ce8947fb38dd491f3706df4ef6adb0ddf74612bf0f54b19e164",
"blk.2.attn_q.weight": "1557a9ea852b1880551f7290e00aded4f35e6c4180fdcbed1b0039bf805f639e",
"blk.2.attn_q.bias": "c3bfe5f3066f655fd36b055530997b59ff33ef013563aaeb3cb8ff07dabd59a9",
"blk.2.attn_k.weight": "cfd08eb69c61ae2f9f14f9b7ff5c5394ca264b1a9f3d48156677f90dd1766289",
"blk.2.attn_k.bias": "9b839bc0e79974a0b3f5d1895972bc6f5c9a1bc16052e1af786e6a530758152d",
"blk.2.attn_v.weight": "02b26b1208480eaeeb00e7b4cf8b690006ca14759357fc44ed4a2a8924ead993",
"blk.2.attn_v.bias": "e7e6f0089fded1659a867ab736c220d9653ea7da6b1b94baf5c8d30a748b63ab",
"blk.2.attn_output.weight": "a1db121c7d33806b349cadd050300a57db49fdc91224fd07c9ac43bf4299dc79",
"blk.2.attn_output.bias": "7675128b6a92555cd955c820311e91e9417d31f48848f45d047b4100c62148b3",
"blk.2.attn_output_norm.weight": "5b4595e0fbcba67a700c4331adf746d2fba3546364a4db5607ae241947bb1a21",
"blk.2.attn_output_norm.bias": "7b8e16826ea30e5a2ba0b02e0095a901775981a296e98819625320e983060d08",
"blk.2.ffn_up.weight": "a0d815d946ac07a65095c4ae4df77b818845e6d97795c7d82f55e689d944db59",
"blk.2.ffn_up.bias": "ce37c0a4174d6bf773ded7bd016ede627ad3bdb8bc99b9992a18dc8e8898f252",
"blk.2.ffn_down.weight": "f6231d2a25426fbd45b9f1160aa484220eb227ceef0348c4a6a6de890606e5ef",
"blk.2.ffn_down.bias": "429e00556e8dc63a785238b309b9d83738500c1ef6d736fe6526ad88ea496d27",
"blk.2.layer_output_norm.weight": "651457a573adf3f7dd9ee5dfe1c8e89389e94443993aab77ec6a0b05aa621e35",
"blk.2.layer_output_norm.bias": "41fbbeda7fd89b0cef5f945ae44011c316982390401d6f75ba8c6d365e185247",
"blk.3.attn_q.weight": "95a43f32949d2cb8d22815bb27a44abfc6665ba96221af817dfe058cb6ca72c6",
"blk.3.attn_q.bias": "f4e34385e75d8108b6b3bd336106e2133a8c9be0cc343dfe5dc48c32a823c7cb",
"blk.3.attn_k.weight": "6b892da6a17d4d3265265a15f695864a31813ee8c8e710ae9bc9e1adbc6c9a18",
"blk.3.attn_k.bias": "40b8067b641a56014cee42548240aa8930820958b1933004892b5f04fbaef39e",
"blk.3.attn_v.weight": "9fcd5922319dd2a461082a5ce040c1dfe65d87d70ca6547dd0b46eeecc3eeb2b",
"blk.3.attn_v.bias": "b528c56212e66931fdbe267ac327a9c2f87cd03baff3ea719e30afe681da15f1",
"blk.3.attn_output.weight": "e3b178c1b03981e75510e0d277af23ea59cc404b5394e61bd32291825719b502",
"blk.3.attn_output.bias": "712c84d39a6a5a9c06a09da8fd9939ba0d5525524a4bba61ea4de09b48f45cae",
"blk.3.attn_output_norm.weight": "d1ffac88e675592ff72f8a617be32b4a381d443b2f8f2645dbe44a1e5745aac0",
"blk.3.attn_output_norm.bias": "ea31a1c73146234c50e0e43f485c458413714867b8e2703af66482f7db2d6c40",
"blk.3.ffn_up.weight": "4ef4f3b9a1ea6ab2ef2eb6e8b008e06a44790d099d97482a05a51e39a29afac0",
"blk.3.ffn_up.bias": "06a4296dda16f452675c51f108079fe7722552d6521c737d97734943818b9a2b",
"blk.3.ffn_down.weight": "f114b2bebe392c7d80433bb880c6730293aa4561b0b0370dcdaf7472daebd847",
"blk.3.ffn_down.bias": "2c8e67831d28a3bf613fc7912ae3259b63d72abcaf4d30efd8800758400158de",
"blk.3.layer_output_norm.weight": "a1dfeb7b5a51dd56447312ca41e2ad2f361a3ea12ddc355127f5f4219fb0a482",
"blk.3.layer_output_norm.bias": "1ed630021b25c6c6fc93fd32988b9907df966d4982a93081f639aac3044618ab",
"blk.4.attn_q.weight": "b5fae4c1f9a5f33a2a2e816ac0c01c25f422e4efdd59ef1ed93da2610e5370fc",
"blk.4.attn_q.bias": "c2e376524ea98ac3b10d9eee19ecb1b1e261fa5149efe0232844c923dfb428fb",
"blk.4.attn_k.weight": "a4632f5ebf9321d9d08f9112a4e5dda2efe5671df4a4e67fee24845f5b14af16",
"blk.4.attn_k.bias": "a9a02ffb8b8b4f6dfe487a7e0341f1d5318c9d2b793a688f34cb1b22fc66ef60",
"blk.4.attn_v.weight": "10ad8deb81d9fa093b1e5c0f24ea82aa7df43e6aca49e260fcbea56eab8cc86a",
"blk.4.attn_v.bias": "7326813e181e021130bd33ac136293fcffccce2d1d8cb59041e5b13a8cceacf6",
"blk.4.attn_output.weight": "c92573088c7437c2b3cda51490e152c27fb19e5468df591eabba5a49d5398d44",
"blk.4.attn_output.bias": "14e10b419e5859af1eb685af5c330aee67048cd704dcead9217840c6f5393222",
"blk.4.attn_output_norm.weight": "02b6831c0e0fb0edbc579a92812a1dd972cb15d14fcd382d4427c5a7b300ac44",
"blk.4.attn_output_norm.bias": "7eed5cd503bb6bb6ceb1bc8b07cc077903a4f14fb8b9d6cdf39644815ecf1374",
"blk.4.ffn_up.weight": "8d0c91d62e74d6431321116a37cf3339e630bd50ba164d3304fc4fe8dd831223",
"blk.4.ffn_up.bias": "d325f07f73c005a273c484c7be8e7abb4d6e8a5c4fd093f5869133b97629d017",
"blk.4.ffn_down.weight": "7ba7bd81143f40537b84f938e403e19f30e4928625eb371de052b9025beb4d21",
"blk.4.ffn_down.bias": "2853d9c2a75288214a4bf4907dc19d04d01926f4913d302b1aa7bdbfcce0f7a1",
"blk.4.layer_output_norm.weight": "a4ed1885fa77b90fed5300c355ef0aa0c876a8c747151d9d790939d464d57d4f",
"blk.4.layer_output_norm.bias": "62142a81e813a9e636333b2b805d6bc3b17c5e7cd4b15adce1ada6bc9a32563c",
"blk.5.attn_q.weight": "afc1dff080a72c3daad01384b1448d476aaf789871017c8ff8e144788887995d",
"blk.5.attn_q.bias": "748a820371c1d4f872c84545b36358d239c35bf6c99e2812c237d88c3292763b",
"blk.5.attn_k.weight": "59e30c1ed8acd2cbb01de5f62e7804015b9ecf98ba157d98cab016344639eda5",
"blk.5.attn_k.bias": "f839520078f9e589496e982e86d0126c7aa14196047339abffcf49a696229f77",
"blk.5.attn_v.weight": "3e21fb874e21b90308e1f46af034a3c32d3eba1628d62ae5f2246d6af5818923",
"blk.5.attn_v.bias": "5cd4852bf95c1444d10d756750f6bf49f842c0b39e9953c7f408bb67c325ac8c",
"blk.5.attn_output.weight": "636ce6a7752895f204b9d01ba0aedd9a294f908b42f372c22a16d9dd590d7471",
"blk.5.attn_output.bias": "82d924d4b0d2b94f2bbff91619216d6967a3541ce9b1531a6a60457a67b5d219",
"blk.5.attn_output_norm.weight": "5e7bd0a8d3396080f3360d7c4700bf094a06216431bd014c4479eef72ecf4271",
"blk.5.attn_output_norm.bias": "66c6de5edda5466d029c6753780be81ccd4218bf8bc00680000e0f06856ab712",
"blk.5.ffn_up.weight": "5bbf6e7ea380e216e33f8bee06d25f2265359d3876a300e92bc6e41d48e33430",
"blk.5.ffn_up.bias": "9d795388bb36fb33ad3a37fea3ccb4937838e02800a608fb47d363cd06b47370",
"blk.5.ffn_down.weight": "2fd628974e7f075479dd227b46fbd48ae8d3ca34d735b36f391ac06410730368",
"blk.5.ffn_down.bias": "cd213ba9eaa75fa541648097fbe9c96e58077e6c3ad6ad2fb1f21f8350f44291",
"blk.5.layer_output_norm.weight": "159a9df41d15b7022d136f86a2a2631c4635f9816e957472217077b522bcf52a",
"blk.5.layer_output_norm.bias": "24c1f27ffd1eb4e5be7e3a2909943e6f0980635d761fa1efdd0c19645da23766"
}

6
convert/testdata/gemma-2-9b-it.json vendored Normal file
View file

@ -0,0 +1,6 @@
{
"general.architecture": "gemma2",
"gemma2.attention.sliding_window": "4096",
"gemma2.attn_logit_softcapping": "50",
"gemma2.final_logit_softcapping": "30"
}

View file

@ -1,7 +1,6 @@
package convert
import (
"cmp"
"crypto/sha256"
"encoding/hex"
"encoding/json"
@ -11,6 +10,8 @@ import (
"log/slog"
"os"
"slices"
"golang.org/x/exp/maps"
)
const (
@ -184,32 +185,32 @@ func parseVocabularyFromTokenizer(fsys fs.FS) (*Vocabulary, error) {
return nil, err
}
var tokens []token
tokens := make(map[int]token, len(t.Model.Vocab))
for k, v := range t.Model.Vocab {
tokens = append(tokens, token{
tokens[v] = token{
ID: v,
Content: k,
})
}
}
for _, t := range t.AddedTokens {
t.UserDefined = true
tokens = append(tokens, t)
for _, token := range t.AddedTokens {
token.UserDefined = true
tokens[token.ID] = token
}
slices.SortFunc(tokens, func(i, j token) int {
return cmp.Compare(i.ID, j.ID)
})
keys := maps.Keys(tokens)
slices.Sort(keys)
v := Vocabulary{Model: "gpt2"}
for _, t := range tokens {
v.Tokens = append(v.Tokens, t.Content)
v.Scores = append(v.Scores, float32(t.ID))
for _, k := range keys {
token := tokens[k]
v.Tokens = append(v.Tokens, token.Content)
v.Scores = append(v.Scores, float32(token.ID))
switch {
case t.Special:
case token.Special:
v.Types = append(v.Types, tokenTypeControl)
case t.UserDefined:
case token.UserDefined:
v.Types = append(v.Types, tokenTypeUserDefined)
default:
v.Types = append(v.Types, tokenTypeNormal)

View file

@ -15,6 +15,11 @@ import (
)
func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
ast, err := parseAdditionalSpecialTokens(fsys)
if err != nil {
return nil, err
}
bts, err := fs.ReadFile(fsys, "tokenizer.model")
if err != nil {
return nil, err
@ -37,7 +42,12 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
sentencepiece.ModelProto_SentencePiece_BYTE:
v.Types = append(v.Types, int32(t))
default:
v.Types = append(v.Types, int32(sentencepiece.ModelProto_SentencePiece_NORMAL))
tt := int32(sentencepiece.ModelProto_SentencePiece_NORMAL)
if slices.Contains(ast, piece.GetPiece()) {
tt = int32(sentencepiece.ModelProto_SentencePiece_CONTROL)
}
v.Types = append(v.Types, tt)
}
}
@ -81,3 +91,23 @@ func parseSentencePiece(fsys fs.FS) (*Vocabulary, error) {
return &v, nil
}
func parseAdditionalSpecialTokens(fsys fs.FS) ([]string, error) {
f, err := fsys.Open("special_tokens_map.json")
if errors.Is(err, os.ErrNotExist) {
return nil, nil
} else if err != nil {
return nil, err
}
defer f.Close()
var m struct {
AdditionalSpecialTokens []string `json:"additional_special_tokens"`
}
if err := json.NewDecoder(f).Decode(&m); err != nil {
return nil, err
}
return m.AdditionalSpecialTokens, nil
}

View file

@ -111,7 +111,10 @@ On Windows, Ollama inherits your user and system environment variables.
## How do I use Ollama behind a proxy?
Ollama is compatible with proxy servers if `HTTP_PROXY` or `HTTPS_PROXY` are configured. When using either variables, ensure it is set where `ollama serve` can access the values. When using `HTTPS_PROXY`, ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
Ollama pulls models from the Internet and may require a proxy server to access the models. Use `HTTPS_PROXY` to redirect outbound requests through the proxy. Ensure the proxy certificate is installed as a system certificate. Refer to the section above for how to use environment variables on your platform.
> [!NOTE]
> Avoid setting `HTTP_PROXY`. Ollama does not use HTTP for model pulls, only HTTPS. Setting `HTTP_PROXY` may interrupt client connections to the server.
### How do I use Ollama behind a proxy in Docker?
@ -276,4 +279,4 @@ Note: Windows with Radeon GPUs currently default to 1 model maximum due to limit
## How does Ollama load models on multiple GPUs?
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.
Installing multiple GPUs of the same brand can be a great way to increase your available VRAM to load larger models. When you load a new model, Ollama evaluates the required VRAM for the model against what is currently available. If the model will entirely fit on any single GPU, Ollama will load the model on that GPU. This typically provides the best performance as it reduces the amount of data transfering across the PCI bus during inference. If the model does not fit entirely on one GPU, then it will be spread across all the available GPUs.

View file

@ -20,13 +20,12 @@ GPU.
## Manual install
### Download the `ollama` binary
### Download `ollama`
Ollama is distributed as a self-contained binary. Download it to a directory in your PATH:
Download and extract the Linux package:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
```
### Adding Ollama as a startup service (recommended)
@ -96,8 +95,7 @@ curl -fsSL https://ollama.com/install.sh | sh
Or by downloading the ollama binary:
```bash
sudo curl -L https://ollama.com/download/ollama-linux-amd64 -o /usr/bin/ollama
sudo chmod +x /usr/bin/ollama
curl -fsSL https://ollama.com/download/ollama-linux-amd64.tgz | sudo tar zx -C /usr
```
## Installing specific versions

View file

@ -174,7 +174,7 @@ func RunnersDir() (p string) {
defer func() {
if p == "" {
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama_runners'")
slog.Error("unable to locate llm runner directory. Set OLLAMA_RUNNERS_DIR to the location of 'ollama/runners'")
}
}()
@ -190,17 +190,17 @@ func RunnersDir() (p string) {
}
var paths []string
for _, root := range []string{filepath.Dir(exe), cwd} {
for _, root := range []string{filepath.Dir(exe), filepath.Join(filepath.Dir(exe), ".."), cwd} {
paths = append(paths,
root,
filepath.Join(root, "windows-"+runtime.GOARCH),
filepath.Join(root, "dist", "windows-"+runtime.GOARCH),
filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH),
filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH),
)
}
// Try a few variations to improve developer experience when building from source in the local tree
for _, path := range paths {
candidate := filepath.Join(path, "ollama_runners")
candidate := filepath.Join(path, "lib", "ollama", "runners")
if _, err := os.Stat(candidate); err == nil {
p = candidate
break

View file

@ -54,7 +54,7 @@ func commonAMDValidateLibDir() (string, error) {
// Installer payload location if we're running the installed binary
exe, err := os.Executable()
if err == nil {
rocmTargetDir := filepath.Join(filepath.Dir(exe), "rocm")
rocmTargetDir := filepath.Join(filepath.Dir(exe), "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ROCM next to ollama executable " + rocmTargetDir)
return rocmTargetDir, nil

View file

@ -153,7 +153,7 @@ func AMDValidateLibDir() (string, error) {
// Installer payload (if we're running from some other location)
localAppData := os.Getenv("LOCALAPPDATA")
appDir := filepath.Join(localAppData, "Programs", "Ollama")
rocmTargetDir := filepath.Join(appDir, "rocm")
rocmTargetDir := filepath.Join(appDir, "..", "lib", "ollama")
if rocmLibUsable(rocmTargetDir) {
slog.Debug("detected ollama installed ROCm at " + rocmTargetDir)
return rocmTargetDir, nil

View file

@ -4,9 +4,17 @@ package gpu
import (
"log/slog"
"os"
"regexp"
"runtime"
"strconv"
"strings"
)
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
ids := []string{}
for _, info := range gpuInfo {
@ -19,3 +27,38 @@ func cudaGetVisibleDevicesEnv(gpuInfo []GpuInfo) (string, string) {
}
return "CUDA_VISIBLE_DEVICES", strings.Join(ids, ",")
}
func cudaVariant(gpuInfo CudaGPUInfo) string {
if runtime.GOARCH == "arm64" && runtime.GOOS == "linux" {
if CudaTegra != "" {
ver := strings.Split(CudaTegra, ".")
if len(ver) > 0 {
return "jetpack" + ver[0]
}
} else if data, err := os.ReadFile("/etc/nv_tegra_release"); err == nil {
r := regexp.MustCompile(` R(\d+) `)
m := r.FindSubmatch(data)
if len(m) != 2 {
slog.Info("Unexpected format for /etc/nv_tegra_release. Set JETSON_JETPACK to select version")
} else {
if l4t, err := strconv.Atoi(string(m[1])); err == nil {
// Note: mapping from L4t -> JP is inconsistent (can't just subtract 30)
// https://developer.nvidia.com/embedded/jetpack-archive
switch l4t {
case 35:
return "jetpack5"
case 36:
return "jetpack6"
default:
slog.Info("unsupported L4T version", "nv_tegra_release", string(data))
}
}
}
}
}
if gpuInfo.computeMajor < 6 || gpuInfo.DriverMajor < 12 {
return "v11"
}
return "v12"
}

View file

@ -64,10 +64,6 @@ var RocmComputeMin = 9
// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU
// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")
// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing
@ -215,7 +211,7 @@ func GetGPUInfo() GpuInfoList {
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: cpuCapability,
Variant: cpuCapability.String(),
ID: "0",
},
},
@ -229,11 +225,7 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo}
}
// On windows we bundle the nvidia library one level above the runner dir
depPath := ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
}
depPath := LibraryDir()
// Load ALL libraries
cHandles = initCudaHandles()
@ -269,11 +261,23 @@ func GetGPUInfo() GpuInfoList {
gpuInfo.FreeMemory = uint64(memInfo.free)
gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
gpuInfo.computeMajor = int(memInfo.major)
gpuInfo.computeMinor = int(memInfo.minor)
gpuInfo.MinimumMemory = cudaMinimumMemory
gpuInfo.DependencyPath = depPath
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.DriverMajor = driverMajor
gpuInfo.DriverMinor = driverMinor
variant := cudaVariant(gpuInfo)
if depPath != "" {
gpuInfo.DependencyPath = depPath
// Check for variant specific directory
if variant != "" {
if _, err := os.Stat(filepath.Join(depPath, "cuda_"+variant)); err == nil {
gpuInfo.DependencyPath = filepath.Join(depPath, "cuda_"+variant)
}
}
}
gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
gpuInfo.Variant = variant
// query the management library as well so we can record any skew between the two
// which represents overhead on the GPU we must set aside on subsequent updates
@ -306,13 +310,6 @@ func GetGPUInfo() GpuInfoList {
if envconfig.IntelGPU() {
oHandles = initOneAPIHandles()
if oHandles != nil && oHandles.oneapi != nil {
// On windows we bundle the oneapi library one level above the runner dir
depPath = ""
if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
}
for d := range oHandles.oneapi.num_drivers {
if oHandles.oneapi == nil {
// shouldn't happen
@ -467,10 +464,12 @@ func GetGPUInfo() GpuInfoList {
func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
var ldPaths []string
var patterns []string
gpuLibPaths := []string{}
slog.Debug("Searching for GPU library", "name", baseLibName)
// Start with our bundled libraries
patterns := []string{filepath.Join(LibraryDir(), baseLibName)}
switch runtime.GOOS {
case "windows":
ldPaths = strings.Split(os.Getenv("PATH"), ";")
@ -479,13 +478,14 @@ func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
default:
return gpuLibPaths
}
// Start with whatever we find in the PATH/LD_LIBRARY_PATH
// Then with whatever we find in the PATH/LD_LIBRARY_PATH
for _, ldPath := range ldPaths {
d, err := filepath.Abs(ldPath)
if err != nil {
continue
}
patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
patterns = append(patterns, filepath.Join(d, baseLibName))
}
patterns = append(patterns, defaultPatterns...)
slog.Debug("gpu library search", "globs", patterns)
@ -641,3 +641,31 @@ func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
return "", ""
}
}
func LibraryDir() string {
// On Windows/linux we bundle the dependencies at the same level as the executable
appExe, err := os.Executable()
if err != nil {
slog.Warn("failed to lookup executable path", "error", err)
}
cwd, err := os.Getwd()
if err != nil {
slog.Warn("failed to lookup working directory", "error", err)
}
// Scan for any of our dependeices, and pick first match
for _, root := range []string{filepath.Dir(appExe), filepath.Join(filepath.Dir(appExe), ".."), cwd} {
libDep := filepath.Join("lib", "ollama")
if _, err := os.Stat(filepath.Join(root, libDep)); err == nil {
return filepath.Join(root, libDep)
}
// Developer mode, local build
if _, err := os.Stat(filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
if _, err := os.Stat(filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)); err == nil {
return filepath.Join(root, "dist", runtime.GOOS+"-"+runtime.GOARCH, libDep)
}
}
slog.Warn("unable to locate gpu dependency libraries")
return ""
}

View file

@ -25,7 +25,7 @@ func GetGPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUCapability(),
Variant: GetCPUCapability().String(),
memInfo: mem,
},
}
@ -48,7 +48,7 @@ func GetCPUInfo() GpuInfoList {
return []GpuInfo{
{
Library: "cpu",
Variant: GetCPUCapability(),
Variant: GetCPUCapability().String(),
memInfo: mem,
},
}

View file

@ -47,7 +47,7 @@ var (
CudartMgmtName = "libcudart.so*"
NvcudaMgmtName = "libcuda.so*"
NvmlMgmtName = "" // not currently wired on linux
OneapiMgmtName = "libze_intel_gpu.so"
OneapiMgmtName = "libze_intel_gpu.so*"
)
func GetCPUMem() (memInfo, error) {

View file

@ -32,4 +32,29 @@ func TestCPUMemInfo(t *testing.T) {
}
}
func TestByLibrary(t *testing.T) {
type testCase struct {
input []GpuInfo
expect int
}
testCases := map[string]*testCase{
"empty": {input: []GpuInfo{}, expect: 0},
"cpu": {input: []GpuInfo{{Library: "cpu"}}, expect: 1},
"cpu + GPU": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU no variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda"}, {Library: "cuda"}}, expect: 2},
"cpu + 2 GPU same variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v11"}}, expect: 2},
"cpu + 2 GPU diff variant": {input: []GpuInfo{{Library: "cpu"}, {Library: "cuda", Variant: "v11"}, {Library: "cuda", Variant: "v12"}}, expect: 3},
}
for k, v := range testCases {
t.Run(k, func(t *testing.T) {
resp := (GpuInfoList)(v.input).ByLibrary()
if len(resp) != v.expect {
t.Fatalf("expected length %d, got %d => %+v", v.expect, len(resp), resp)
}
})
}
}
// TODO - add some logic to figure out card type through other means and actually verify we got back what we expected

View file

@ -19,7 +19,7 @@ type GpuInfo struct {
Library string `json:"library,omitempty"`
// Optional variant to select (e.g. versions, cpu feature flags)
Variant CPUCapability `json:"variant"`
Variant string `json:"variant"`
// MinimumMemory represents the minimum memory required to use the GPU
MinimumMemory uint64 `json:"-"`
@ -53,8 +53,10 @@ type CPUInfo struct {
type CudaGPUInfo struct {
GpuInfo
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
OSOverhead uint64 // Memory overhead between the driver library and management library
index int //nolint:unused,nolintlint
computeMajor int //nolint:unused,nolintlint
computeMinor int //nolint:unused,nolintlint
}
type CudaGPUInfoList []CudaGPUInfo
@ -81,8 +83,8 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
for _, info := range l {
found := false
requested := info.Library
if info.Variant != CPUCapabilityNone {
requested += "_" + info.Variant.String()
if info.Variant != CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
for i, lib := range libs {
if lib == requested {
@ -92,7 +94,7 @@ func (l GpuInfoList) ByLibrary() []GpuInfoList {
}
}
if !found {
libs = append(libs, info.Library)
libs = append(libs, requested)
resp = append(resp, []GpuInfo{info})
}
}
@ -105,6 +107,7 @@ func (l GpuInfoList) LogDetails() {
slog.Info("inference compute",
"id", g.ID,
"library", g.Library,
"variant", g.Variant,
"compute", g.Compute,
"driver", fmt.Sprintf("%d.%d", g.DriverMajor, g.DriverMinor),
"name", g.Name,

View file

@ -70,8 +70,8 @@ func TestAllMiniLMEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031, got %.8f", res.Embeddings[0][0])
}
if res.PromptEvalCount != 8 {
t.Fatalf("expected 8 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 6 {
t.Fatalf("expected 6 prompt tokens, got %d", res.PromptEvalCount)
}
}
@ -102,8 +102,8 @@ func TestAllMiniLMBatchEmbed(t *testing.T) {
t.Fatalf("expected 0.010071031 and -0.009802706, got %.8f and %.8f", res.Embeddings[0][0], res.Embeddings[1][0])
}
if res.PromptEvalCount != 16 {
t.Fatalf("expected 16 prompt tokens, got %d", res.PromptEvalCount)
if res.PromptEvalCount != 12 {
t.Fatalf("expected 12 prompt tokens, got %d", res.PromptEvalCount)
}
}

View file

@ -1,12 +1,13 @@
set(TARGET ollama_llama_server)
option(LLAMA_SERVER_VERBOSE "Build verbose logging option for Server" ON)
set(LLAMA_SERVER_LDFLAGS $ENV{LLAMA_SERVER_LDFLAGS})
include_directories(${CMAKE_CURRENT_SOURCE_DIR})
add_executable(${TARGET} server.cpp utils.hpp json.hpp httplib.h)
install(TARGETS ${TARGET} RUNTIME)
target_compile_definitions(${TARGET} PRIVATE
SERVER_VERBOSE=$<BOOL:${LLAMA_SERVER_VERBOSE}>
)
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE ggml llama common llava ${CMAKE_THREAD_LIBS_INIT} ${LLAMA_SERVER_LDFLAGS})
if (WIN32)
TARGET_LINK_LIBRARIES(${TARGET} PRIVATE ws2_32)
endif()

View file

@ -1429,7 +1429,13 @@ struct llama_server_context
switch (task.type)
{
case TASK_TYPE_COMPLETION: {
server_slot *slot = prefix_slot(task.data["prompt"]);
server_slot *slot = nullptr;
if (task.embedding_mode) {
// Embedding seq_id (aka slot id) must always be <= token length, so always use slot 0
slot = slots[0].available() ? &slots[0] : nullptr;
} else {
slot = prefix_slot(task.data["prompt"]);
}
if (slot == nullptr)
{
// if no slot is available, we defer this task for processing later

View file

@ -9,11 +9,14 @@ init_vars() {
ARCH="arm64"
;;
*)
ARCH=$(uname -m | sed -e "s/aarch64/arm64/g")
echo "GOARCH must be set"
echo "this script is meant to be run from within go generate"
exit 1
;;
esac
LLAMACPP_DIR=../llama.cpp
CMAKE_DEFS=""
CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on"
CMAKE_TARGETS="--target ollama_llama_server"
if echo "${CGO_CFLAGS}" | grep -- '-g' >/dev/null; then
CMAKE_DEFS="-DCMAKE_BUILD_TYPE=RelWithDebInfo -DCMAKE_VERBOSE_MAKEFILE=on -DLLAMA_GPROF=on -DLLAMA_SERVER_VERBOSE=on ${CMAKE_DEFS}"
@ -27,6 +30,7 @@ init_vars() {
WHOLE_ARCHIVE="-Wl,-force_load"
NO_WHOLE_ARCHIVE=""
GCC_ARCH="-arch ${ARCH}"
DIST_BASE=../../dist/darwin-${GOARCH}/
;;
"Linux")
LIB_EXT="so"
@ -35,6 +39,7 @@ init_vars() {
# Cross compiling not supported on linux - Use docker
GCC_ARCH=""
DIST_BASE=../../dist/linux-${GOARCH}/
;;
*)
;;
@ -42,6 +47,7 @@ init_vars() {
if [ -z "${CMAKE_CUDA_ARCHITECTURES}" ] ; then
CMAKE_CUDA_ARCHITECTURES="50;52;61;70;75;80"
fi
GZIP=$(which pigz 2>/dev/null || echo "gzip")
}
git_module_setup() {
@ -85,26 +91,36 @@ build() {
compress() {
echo "Compressing payloads to reduce overall binary size..."
pids=""
rm -rf ${BUILD_DIR}/bin/*.gz
for f in ${BUILD_DIR}/bin/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
${GZIP} -n --best -f ${f} &
compress_pids+=" $!"
done
# check for lib directory
if [ -d ${BUILD_DIR}/lib ]; then
for f in ${BUILD_DIR}/lib/* ; do
gzip -n --best -f ${f} &
pids+=" $!"
${GZIP} -n --best -f ${f} &
compress_pids+=" $!"
done
fi
echo
for pid in ${pids}; do
}
wait_for_compress() {
for pid in ${compress_pids}; do
wait $pid
done
echo "Finished compression"
}
install() {
echo "Installing libraries to bin dir ${BUILD_DIR}/bin/"
for lib in $(find ${BUILD_DIR} -name \*.${LIB_EXT}); do
rm -f "${BUILD_DIR}/bin/$(basename ${lib})"
cp -af "${lib}" "${BUILD_DIR}/bin/"
done
}
# Keep the local tree clean after we're done with the build
cleanup() {
(cd ${LLAMACPP_DIR}/ && git checkout CMakeLists.txt)

View file

@ -6,6 +6,7 @@
set -ex
set -o pipefail
compress_pids=""
echo "Starting darwin generate script"
source $(dirname $0)/gen_common.sh
init_vars
@ -98,4 +99,5 @@ case "${GOARCH}" in
esac
cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View file

@ -13,6 +13,7 @@
set -ex
set -o pipefail
compress_pids=""
# See https://llvm.org/docs/AMDGPUUsage.html#processors for reference
amdGPUs() {
@ -51,7 +52,7 @@ if [ -z "${CUDACXX}" ]; then
export CUDACXX=$(command -v nvcc)
fi
fi
COMMON_CMAKE_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
COMMON_CMAKE_DEFS="-DCMAKE_SKIP_RPATH=on -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_AVX=on -DGGML_AVX2=off -DGGML_AVX512=off -DGGML_FMA=off -DGGML_F16C=off -DGGML_OPENMP=off"
source $(dirname $0)/gen_common.sh
init_vars
git_module_setup
@ -77,10 +78,11 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
if [ -n "${OLLAMA_CUSTOM_CPU_DEFS}" ]; then
init_vars
echo "OLLAMA_CUSTOM_CPU_DEFS=\"${OLLAMA_CUSTOM_CPU_DEFS}\""
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
CMAKE_DEFS="${OLLAMA_CUSTOM_CPU_DEFS} -DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on ${CMAKE_DEFS}"
BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building custom CPU"
build
install
compress
else
# Darwin Rosetta x86 emulation does NOT support AVX, AVX2, AVX512
@ -93,7 +95,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
# -DGGML_AVX512_VBMI -- 2018 Intel Cannon Lake
# -DGGML_AVX512_VNNI -- 2021 Intel Alder Lake
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=off -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
COMMON_CPU_DEFS="-DBUILD_SHARED_LIBS=on -DCMAKE_POSITION_INDEPENDENT_CODE=on -DGGML_NATIVE=off -DGGML_OPENMP=off"
if [ -z "${OLLAMA_CPU_TARGET}" -o "${OLLAMA_CPU_TARGET}" = "cpu" ]; then
#
# CPU first for the default library, set up as lowest common denominator for maximum compatibility (including Rosetta)
@ -103,6 +105,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu"
echo "Building LCD CPU"
build
install
compress
fi
@ -120,6 +123,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu_avx"
echo "Building AVX CPU"
build
install
compress
fi
@ -133,6 +137,7 @@ if [ -z "${OLLAMA_SKIP_CPU_GENERATE}" ]; then
BUILD_DIR="../build/linux/${ARCH}/cpu_avx2"
echo "Building AVX2 CPU"
build
install
compress
fi
fi
@ -160,7 +165,7 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
echo "CUDA libraries detected - building dynamic CUDA library"
init_vars
CUDA_MAJOR=$(ls "${CUDA_LIB_DIR}"/libcudart.so.* | head -1 | cut -f3 -d. || true)
if [ -n "${CUDA_MAJOR}" ]; then
if [ -n "${CUDA_MAJOR}" -a -z "${CUDA_VARIANT}" ]; then
CUDA_VARIANT=_v${CUDA_MAJOR}
fi
if [ "${ARCH}" == "arm64" ]; then
@ -178,29 +183,19 @@ if [ -z "${OLLAMA_SKIP_CUDA_GENERATE}" -a -d "${CUDA_LIB_DIR}" ]; then
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES} ${OLLAMA_CUSTOM_CUDA_DEFS}"
echo "Building custom CUDA GPU"
else
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_FLAGS=-t8 -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
CMAKE_CUDA_DEFS="-DGGML_CUDA=on -DCMAKE_CUDA_ARCHITECTURES=${CMAKE_CUDA_ARCHITECTURES}"
fi
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS}"
export CUDAFLAGS="-t8"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} ${ARM64_DEFS} ${CMAKE_CUDA_DEFS} -DGGML_STATIC=off"
BUILD_DIR="../build/linux/${ARCH}/cuda${CUDA_VARIANT}"
EXTRA_LIBS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
export LLAMA_SERVER_LDFLAGS="-L${CUDA_LIB_DIR} -lcudart -lcublas -lcublasLt -lcuda"
CUDA_DIST_DIR="${CUDA_DIST_DIR:-${DIST_BASE}/lib/ollama}"
build
# Carry the CUDA libs as payloads to help reduce dependency burden on users
#
# TODO - in the future we may shift to packaging these separately and conditionally
# downloading them in the install script.
DEPS="$(ldd ${BUILD_DIR}/bin/ollama_llama_server )"
for lib in libcudart.so libcublas.so libcublasLt.so ; do
DEP=$(echo "${DEPS}" | grep ${lib} | cut -f1 -d' ' | xargs || true)
if [ -n "${DEP}" -a -e "${CUDA_LIB_DIR}/${DEP}" ]; then
cp "${CUDA_LIB_DIR}/${DEP}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" ]; then
cp "${CUDA_LIB_DIR}/${lib}.${CUDA_MAJOR}" "${BUILD_DIR}/bin/"
elif [ -e "${CUDART_LIB_DIR}/${lib}" ]; then
cp -d ${CUDART_LIB_DIR}/${lib}* "${BUILD_DIR}/bin/"
else
cp -d "${CUDA_LIB_DIR}/${lib}*" "${BUILD_DIR}/bin/"
fi
install
echo "Installing CUDA dependencies in ${CUDA_DIST_DIR}"
mkdir -p "${CUDA_DIST_DIR}"
for lib in ${CUDA_LIB_DIR}/libcudart.so* ${CUDA_LIB_DIR}/libcublas.so* ${CUDA_LIB_DIR}/libcublasLt.so* ; do
cp -a "${lib}" "${CUDA_DIST_DIR}"
done
compress
@ -218,21 +213,24 @@ if [ -z "${OLLAMA_SKIP_ONEAPI_GENERATE}" -a -d "${ONEAPI_ROOT}" ]; then
CC=icx
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DGGML_SYCL=ON -DGGML_SYCL_F16=OFF"
BUILD_DIR="../build/linux/${ARCH}/oneapi"
EXTRA_LIBS="-fsycl -Wl,-rpath,${ONEAPI_ROOT}/compiler/latest/lib,-rpath,${ONEAPI_ROOT}/mkl/latest/lib,-rpath,${ONEAPI_ROOT}/tbb/latest/lib,-rpath,${ONEAPI_ROOT}/compiler/latest/opt/oclfpga/linux64/lib -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
ONEAPI_DIST_DIR="${DIST_BASE}/lib/ollama"
export LLAMA_SERVER_LDFLAGS="-fsycl -lOpenCL -lmkl_core -lmkl_sycl_blas -lmkl_intel_ilp64 -lmkl_tbb_thread -ltbb"
DEBUG_FLAGS="" # icx compiles with -O0 if we pass -g, so we must remove it
build
# copy oneAPI dependencies
mkdir -p "${ONEAPI_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e sycl -e mkl -e tbb); do
cp "${dep}" "${BUILD_DIR}/bin/"
cp -a "${dep}" "${ONEAPI_DIST_DIR}"
done
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${BUILD_DIR}/bin/"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libOpenCL.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libimf.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libintlc.so.5" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libirng.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libpi_level_zero.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libsvml.so" "${ONEAPI_DIST_DIR}"
cp "${ONEAPI_ROOT}/compiler/latest/lib/libur_loader.so.0" "${ONEAPI_DIST_DIR}"
install
compress
fi
@ -254,7 +252,7 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
ROCM_VARIANT=_v$(ls ${ROCM_PATH}/lib/librocblas.so.*.*.????? | cut -f5 -d. || true)
fi
init_vars
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DLLAMA_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
CMAKE_DEFS="${COMMON_CMAKE_DEFS} ${CMAKE_DEFS} -DGGML_HIPBLAS=on -DGGML_CUDA_NO_PEER_COPY=on -DCMAKE_C_COMPILER=$ROCM_PATH/llvm/bin/clang -DCMAKE_CXX_COMPILER=$ROCM_PATH/llvm/bin/clang++ -DAMDGPU_TARGETS=$(amdGPUs) -DGPU_TARGETS=$(amdGPUs)"
# Users building from source can tune the exact flags we pass to cmake for configuring llama.cpp
if [ -n "${OLLAMA_CUSTOM_ROCM_DEFS}" ]; then
echo "OLLAMA_CUSTOM_ROCM_DEFS=\"${OLLAMA_CUSTOM_ROCM_DEFS}\""
@ -262,23 +260,22 @@ if [ -z "${OLLAMA_SKIP_ROCM_GENERATE}" -a -d "${ROCM_PATH}" ]; then
echo "Building custom ROCM GPU"
fi
BUILD_DIR="../build/linux/${ARCH}/rocm${ROCM_VARIANT}"
EXTRA_LIBS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -Wl,-rpath,\$ORIGIN/../../rocm/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
# ROCm dependencies are too large to fit into a unified bundle
ROCM_DIST_DIR="${DIST_BASE}/../linux-${GOARCH}-rocm/lib/ollama"
# TODO figure out how to disable runpath (rpath)
# export CMAKE_HIP_FLAGS="-fno-rtlib-add-rpath" # doesn't work
export LLAMA_SERVER_LDFLAGS="-L${ROCM_PATH}/lib -L/opt/amdgpu/lib/x86_64-linux-gnu/ -lhipblas -lrocblas -lamdhip64 -lrocsolver -lamd_comgr -lhsa-runtime64 -lrocsparse -ldrm -ldrm_amdgpu"
build
# Record the ROCM dependencies
rm -f "${BUILD_DIR}/bin/deps.txt"
touch "${BUILD_DIR}/bin/deps.txt"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -e rocm -e amdgpu -e libtinfo ); do
echo "${dep}" >> "${BUILD_DIR}/bin/deps.txt"
# copy the ROCM dependencies
mkdir -p "${ROCM_DIST_DIR}"
for dep in $(ldd "${BUILD_DIR}/bin/ollama_llama_server" | grep "=>" | cut -f2 -d= | cut -f2 -d' ' | grep -v "${ARCH}/rocm${ROCM_VARIANT}" | grep -e rocm -e amdgpu -e libtinfo ); do
cp -a "${dep}"* "${ROCM_DIST_DIR}"
done
# bomb out if for some reason we didn't get a few deps
if [ $(cat "${BUILD_DIR}/bin/deps.txt" | wc -l ) -lt 8 ] ; then
cat "${BUILD_DIR}/bin/deps.txt"
echo "ERROR: deps file short"
exit 1
fi
install
compress
fi
cleanup
wait_for_compress
echo "go generate completed. LLM runners: $(cd ${BUILD_DIR}/..; echo *)"

View file

@ -35,7 +35,7 @@ function init_vars {
)
$script:commonCpuDefs = @("-DCMAKE_POSITION_INDEPENDENT_CODE=on")
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\ollama_runners"
$script:DIST_BASE = "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\runners"
md "$script:DIST_BASE" -ea 0 > $null
if ($env:CGO_CFLAGS -contains "-g") {
$script:cmakeDefs += @("-DCMAKE_VERBOSE_MAKEFILE=on", "-DLLAMA_SERVER_VERBOSE=on", "-DCMAKE_BUILD_TYPE=RelWithDebInfo")
@ -117,7 +117,7 @@ function build {
if ($cmakeDefs -contains "-G") {
$extra=@("-j8")
} else {
$extra= @("--", "/p:CL_MPcount=8")
$extra= @("--", "/maxCpuCount:8")
}
write-host "building with: cmake --build $script:buildDir --config $script:config $($script:cmakeTargets | ForEach-Object { `"--target`", $_ }) $extra"
& cmake --build $script:buildDir --config $script:config ($script:cmakeTargets | ForEach-Object { "--target", $_ }) $extra
@ -261,7 +261,7 @@ function build_cuda() {
if ((-not "${env:OLLAMA_SKIP_CUDA_GENERATE}") -and ("${script:CUDA_LIB_DIR}")) {
# Then build cuda as a dynamically loaded library
$nvcc = "$script:CUDA_LIB_DIR\nvcc.exe"
$script:CUDA_VERSION=(get-item ($nvcc | split-path | split-path)).Basename
$script:CUDA_VERSION=((get-item ($nvcc | split-path | split-path)).Basename -Split "\.")[0]
if ($null -ne $script:CUDA_VERSION) {
$script:CUDA_VARIANT="_"+$script:CUDA_VERSION
}
@ -273,9 +273,9 @@ function build_cuda() {
"-DGGML_CUDA=ON",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
"-DCUDAToolkit_INCLUDE_DIR=$script:CUDA_INCLUDE_DIR",
"-DCMAKE_CUDA_FLAGS=-t8",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}"
"-DCMAKE_CUDA_FLAGS=-t6",
"-DCMAKE_CUDA_ARCHITECTURES=${script:CMAKE_CUDA_ARCHITECTURES}",
"-DCMAKE_CUDA_COMPILER_TOOLKIT_ROOT=$env:CUDA_PATH"
)
if ($null -ne $env:OLLAMA_CUSTOM_CUDA_DEFS) {
write-host "OLLAMA_CUSTOM_CUDA_DEFS=`"${env:OLLAMA_CUSTOM_CUDA_DEFS}`""
@ -286,12 +286,11 @@ function build_cuda() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\" -ea 0 > $null
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\cuda\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
write-host "copying CUDA dependencies to ${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cudart64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublas64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${script:CUDA_LIB_DIR}\cublasLt64_*.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
} else {
write-host "Skipping CUDA generation step"
}
@ -325,18 +324,17 @@ function build_oneapi() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\oneapi\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\" -ea 0 > $null
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libirngmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\libmmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_level_zero.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_unified_runtime.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\pi_win_proxy_loader.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\svml_dispmd.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\compiler\latest\bin\sycl7.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_core.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_sycl_blas.4.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:ONEAPI_ROOT}\mkl\latest\bin\mkl_tbb_thread.2.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
} else {
Write-Host "Skipping oneAPI generation step"
}
@ -357,7 +355,7 @@ function build_rocm() {
"-DCMAKE_C_COMPILER=clang.exe",
"-DCMAKE_CXX_COMPILER=clang++.exe",
"-DGGML_HIPBLAS=on",
"-DLLAMA_CUDA_NO_PEER_COPY=on",
"-DGGML_CUDA_NO_PEER_COPY=on",
"-DHIP_PLATFORM=amd",
"-DGGML_AVX=on",
"-DGGML_AVX2=off",
@ -386,12 +384,11 @@ function build_rocm() {
sign
install
rm -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\"
md "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\" -ea 0 > $null
cp "${env:HIP_PATH}\bin\hipblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
cp "${env:HIP_PATH}\bin\rocblas.dll" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\"
# amdhip64.dll dependency comes from the driver and must be installed on the host to use AMD GPUs
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\rocm\rocblas\library\"
cp "${env:HIP_PATH}\bin\rocblas\library\*" "${script:SRC_DIR}\dist\windows-${script:ARCH}\lib\ollama\rocblas\library\"
} else {
write-host "Skipping ROCm generation step"
}

View file

@ -43,6 +43,14 @@ func (kv KV) Architecture() string {
return "unknown"
}
func (kv KV) Kind() string {
if s, ok := kv["general.type"].(string); ok {
return s
}
return "unknown"
}
func (kv KV) ParameterCount() uint64 {
return kv.u64("general.parameter_count")
}

View file

@ -33,7 +33,6 @@ func TestEstimateGPULayers(t *testing.T) {
assert.Len(t, tensors, inputLayerCount+1)
err = WriteGGUF(f, KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(inputLayerCount),

View file

@ -1,60 +0,0 @@
diff --git a/src/llama.cpp b/src/llama.cpp
index 721b8f4e..cfe7ac40 100644
--- a/src/llama.cpp
+++ b/src/llama.cpp
@@ -8420,14 +8420,14 @@ struct llm_build_context {
}
struct ggml_tensor * build_inp_mean() {
- lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
+ lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, cparams.n_seq_max);
cb(lctx.inp_mean, "inp_mean", -1);
ggml_set_input(lctx.inp_mean);
return lctx.inp_mean;
}
struct ggml_tensor * build_inp_cls() {
- lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
+ lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, cparams.n_seq_max);
cb(lctx.inp_cls, "inp_cls", -1);
ggml_set_input(lctx.inp_cls);
return lctx.inp_cls;
@@ -13847,19 +13847,16 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
float * data = (float *) lctx.inp_mean->data;
- memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
+ memset(lctx.inp_mean->data, 0, n_tokens * cparams.n_seq_max * ggml_element_size(lctx.inp_mean));
std::vector<uint64_t> sum(n_tokens, 0);
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
-
sum[seq_id] += 1;
}
- std::vector<float> div(n_tokens, 0.0f);
- for (int i = 0; i < n_tokens; ++i) {
+ std::vector<float> div(cparams.n_seq_max, 0.0f);
+ for (uint32_t i = 0; i < cparams.n_seq_max; ++i) {
const uint64_t s = sum[i];
if (s > 0) {
div[i] = 1.0f/float(s);
@@ -13879,14 +13876,11 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
uint32_t * data = (uint32_t *) lctx.inp_cls->data;
- memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
+ memset(lctx.inp_cls->data, 0, cparams.n_seq_max * ggml_element_size(lctx.inp_cls));
for (int i = 0; i < n_tokens; ++i) {
const llama_seq_id seq_id = batch.seq_id[i][0];
const llama_pos pos = batch.pos[i];
-
- GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
-
if (pos == 0) {
data[seq_id] = i;
}

View file

@ -82,8 +82,8 @@ func serversForGpu(info gpu.GpuInfo) []string {
// glob workDir for files that start with ollama_
availableServers := getAvailableServers()
requested := info.Library
if info.Variant != gpu.CPUCapabilityNone {
requested += "_" + info.Variant.String()
if info.Variant != gpu.CPUCapabilityNone.String() {
requested += "_" + info.Variant
}
servers := []string{}

View file

@ -258,7 +258,7 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
params = append(params, "--mlock")
}
if gpu.IsNUMA() {
if gpu.IsNUMA() && gpus[0].Library == "cpu" {
numaMode := "distribute"
if runtime.GOOS == "linux" {
if _, err := exec.LookPath("numactl"); err == nil {
@ -306,20 +306,18 @@ func NewLlamaServer(gpus gpu.GpuInfoList, model string, ggml *GGML, adapters, pr
if runtime.GOOS == "windows" {
pathEnv = "PATH"
}
// prepend the server directory to LD_LIBRARY_PATH/PATH and the parent dir for common dependencies
libraryPaths := []string{dir, filepath.Dir(dir)}
// Start with the server directory for the LD_LIBRARY_PATH/PATH
libraryPaths := []string{dir}
if libraryPath, ok := os.LookupEnv(pathEnv); ok {
// Append our runner directory to the path
// This will favor system libraries over our bundled library dependencies
// favor our bundled library dependencies over system libraries
libraryPaths = append(libraryPaths, filepath.SplitList(libraryPath)...)
}
// Note: we always put the dependency path first
// since this was the exact version we verified for AMD GPUs
// and we favor what the user had in their path
// since this was the exact version we compiled/linked against
if gpus[0].DependencyPath != "" {
// TODO refine for multi-gpu support
// assume gpus from the same library have the same dependency path
libraryPaths = append([]string{gpus[0].DependencyPath}, libraryPaths...)
}

View file

@ -4,6 +4,7 @@ set -eu
export VERSION=${VERSION:-$(git describe --tags --first-parent --abbrev=7 --long --dirty --always | sed -e "s/^v//g")}
export GOFLAGS="'-ldflags=-w -s \"-X=github.com/ollama/ollama/version.Version=$VERSION\" \"-X=github.com/ollama/ollama/server.mode=release\"'"
GZIP=$(which pigz 2>/dev/null || echo "gzip")
BUILD_ARCH=${BUILD_ARCH:-"amd64 arm64"}
export AMDGPU_TARGETS=${AMDGPU_TARGETS:=""}
@ -21,11 +22,16 @@ for TARGETARCH in ${BUILD_ARCH}; do
-t builder:$TARGETARCH \
.
docker create --platform linux/$TARGETARCH --name builder-$TARGETARCH builder:$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/ollama ./dist/ollama-linux-$TARGETARCH
if [ "$TARGETARCH" = "amd64" ]; then
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/deps/ ./dist/
rm -rf ./dist/linux-$TARGETARCH
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH ./dist
if echo ${TARGETARCH} | grep "amd64" > /dev/null; then
docker cp builder-$TARGETARCH:/go/src/github.com/ollama/ollama/dist/linux-$TARGETARCH-rocm ./dist
fi
docker rm builder-$TARGETARCH
echo "Compressing final linux bundle..."
rm -f ./dist/ollama-linux-$TARGETARCH.tgz
(cd dist/linux-$TARGETARCH && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH.tgz )
if [ -d dist/linux-$TARGETARCH-rocm ]; then
(cd dist/linux-$TARGETARCH-rocm && tar cf - . | ${GZIP} --best > ../ollama-linux-$TARGETARCH-rocm.tgz )
fi
done

View file

@ -7,6 +7,7 @@
$ErrorActionPreference = "Stop"
function checkEnv() {
$script:ARCH = $Env:PROCESSOR_ARCHITECTURE.ToLower()
$script:TARGET_ARCH=$Env:PROCESSOR_ARCHITECTURE.ToLower()
Write-host "Building for ${script:TARGET_ARCH}"
write-host "Locating required tools and paths"
@ -15,26 +16,23 @@ function checkEnv() {
$MSVC_INSTALL=(Get-CimInstance MSFT_VSInstance -Namespace root/cimv2/vs)[0].InstallLocation
$env:VCToolsRedistDir=(get-item "${MSVC_INSTALL}\VC\Redist\MSVC\*")[0]
}
# Try to find the CUDA dir
if ($null -eq $env:NVIDIA_DIR) {
# Locate CUDA versions
# Note: this assumes every version found will be built
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length -eq 0) {
$d=(get-command -ea 'silentlycontinue' nvcc).path
if ($d -ne $null) {
$script:NVIDIA_DIR=($d| split-path -parent)
} else {
$cudaList=(get-item "C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v*\bin\" -ea 'silentlycontinue')
if ($cudaList.length > 0) {
$script:NVIDIA_DIR=$cudaList[0]
}
if ($null -ne $d) {
$script:CUDA_DIRS=@($d| split-path -parent)
}
} else {
$script:NVIDIA_DIR=$env:NVIDIA_DIR
$script:CUDA_DIRS=$cudaList
}
$script:INNO_SETUP_DIR=(get-item "C:\Program Files*\Inno Setup*\")[0]
$script:DEPS_DIR="${script:SRC_DIR}\dist\windows-${script:TARGET_ARCH}"
$env:CGO_ENABLED="1"
echo "Checking version"
Write-Output "Checking version"
if (!$env:VERSION) {
$data=(git describe --tags --first-parent --abbrev=7 --long --dirty --always)
$pattern="v(.+)"
@ -71,7 +69,48 @@ function checkEnv() {
function buildOllama() {
write-host "Building ollama CLI"
if ($null -eq ${env:OLLAMA_SKIP_GENERATE}) {
& go generate ./...
Remove-Item -ea 0 -recurse -force -path "${script:SRC_DIR}\dist\windows-${script:ARCH}"
# TODO - consider trying to parallelize this with Start-ThreadJob, but env vars can't be used to toggle
# which targets to build
# Start by skipping CUDA to build everything else
pwsh -Command { $env:OLLAMA_SKIP_CUDA_GENERATE="1"; & go generate ./... }
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
# Then skip everyhting else and build all the CUDA variants
foreach ($env:CUDA_LIB_DIR in $script:CUDA_DIRS) {
write-host "Building CUDA ${env:CUDA_LIB_DIR}"
if ($env:CUDA_LIB_DIR.Contains("v12")) {
pwsh -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:OLLAMA_SKIP_ONEAPI_GENERATE="1"
$env:OLLAMA_SKIP_ROCM_GENERATE="1"
$env:CMAKE_CUDA_ARCHITECTURES="60;61;62;70;72;75;80;86;87;89;90;90a"
$env:OLLAMA_CUSTOM_CUDA_DEFS="-DGGML_CUDA_USE_GRAPHS=on"
$env:CUDA_PATH=split-path -path $env:CUDA_LIB_DIR -parent
$env:PATH="$envs:CUDA_LIB_DIR;$env:PATH"
& go generate ./...
}
} else {
pwsh -Command {
$env:OLLAMA_SKIP_CUDA_GENERATE=""
$env:OLLAMA_SKIP_STATIC_GENERATE="1"
$env:OLLAMA_SKIP_CPU_GENERATE="1"
$env:OLLAMA_SKIP_ONEAPI_GENERATE="1"
$env:OLLAMA_SKIP_ROCM_GENERATE="1"
$env:CMAKE_CUDA_ARCHITECTURES="50;52;53;60;61;62;70;72;75;80;86"
$env:OLLAMA_CUSTOM_CUDA_DEFS=""
$env:CUDA_PATH=split-path -path $env:CUDA_LIB_DIR -parent
$env:PATH="$envs:CUDA_LIB_DIR;$env:PATH"
& go generate ./...
}
}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
} else {
write-host "Skipping generate step with OLLAMA_SKIP_GENERATE set"
@ -83,8 +122,8 @@ function buildOllama() {
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} ollama.exe
if ($LASTEXITCODE -ne 0) { exit($LASTEXITCODE)}
}
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\
New-Item -ItemType Directory -Path .\dist\windows-${script:TARGET_ARCH}\bin\ -Force
cp .\ollama.exe .\dist\windows-${script:TARGET_ARCH}\bin\
}
function buildApp() {
@ -103,22 +142,22 @@ function buildApp() {
function gatherDependencies() {
write-host "Gathering runtime dependencies"
cd "${script:SRC_DIR}"
md "${script:DEPS_DIR}\ollama_runners" -ea 0 > $null
md "${script:DEPS_DIR}\lib\ollama" -ea 0 > $null
# TODO - this varies based on host build system and MSVC version - drive from dumpbin output
# currently works for Win11 + MSVC 2019 + Cuda V11
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\msvcp140*.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140.dll" "${script:DEPS_DIR}\lib\ollama\"
cp "${env:VCToolsRedistDir}\x64\Microsoft.VC*.CRT\vcruntime140_1.dll" "${script:DEPS_DIR}\lib\ollama\"
foreach ($part in $("runtime", "stdio", "filesystem", "math", "convert", "heap", "string", "time", "locale", "environment")) {
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\ollama_runners\"
cp "$env:VCToolsRedistDir\..\..\..\Tools\Llvm\x64\bin\api-ms-win-crt-${part}*.dll" "${script:DEPS_DIR}\lib\ollama\"
}
cp "${script:SRC_DIR}\app\ollama_welcome.ps1" "${script:SRC_DIR}\dist\"
if ("${env:KEY_CONTAINER}") {
write-host "about to sign"
foreach ($file in (get-childitem "${script:DEPS_DIR}\cuda\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
foreach ($file in (get-childitem "${script:DEPS_DIR}\lib\ollama\cu*.dll") + @("${script:SRC_DIR}\dist\ollama_welcome.ps1")){
write-host "signing $file"
& "${script:SignTool}" sign /v /fd sha256 /t http://timestamp.digicert.com /f "${script:OLLAMA_CERT}" `
/csp "Google Cloud KMS Provider" /kc ${env:KEY_CONTAINER} $file

View file

@ -63,16 +63,36 @@ if [ -n "$NEEDS" ]; then
exit 1
fi
status "Downloading ollama..."
curl --fail --show-error --location --progress-bar -o $TEMP_DIR/ollama "https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
for BINDIR in /usr/local/bin /usr/bin /bin; do
echo $PATH | grep -q $BINDIR && break || continue
done
OLLAMA_INSTALL_DIR=$(dirname ${BINDIR})
status "Installing ollama to $BINDIR..."
status "Installing ollama to $OLLAMA_INSTALL_DIR"
$SUDO install -o0 -g0 -m755 -d $BINDIR
$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $BINDIR/ollama
$SUDO install -o0 -g0 -m755 -d "$OLLAMA_INSTALL_DIR"
if curl -I --silent --fail --location "https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" >/dev/null ; then
status "Downloading Linux ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
BUNDLE=1
if [ "$OLLAMA_INSTALL_DIR/bin/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
fi
else
status "Downloading Linux ${ARCH} CLI"
curl --fail --show-error --location --progress-bar -o "$TEMP_DIR/ollama"\
"https://ollama.com/download/ollama-linux-${ARCH}${VER_PARAM}"
$SUDO install -o0 -g0 -m755 $TEMP_DIR/ollama $OLLAMA_INSTALL_DIR/ollama
BUNDLE=0
if [ "$OLLAMA_INSTALL_DIR/ollama" != "$BINDIR/ollama" ] ; then
status "Making ollama accessible in the PATH in $BINDIR"
$SUDO ln -sf "$OLLAMA_INSTALL_DIR/ollama" "$BINDIR/ollama"
fi
fi
install_success() {
status 'The Ollama API is now available at 127.0.0.1:11434.'
@ -178,6 +198,16 @@ if ! check_gpu lspci nvidia && ! check_gpu lshw nvidia && ! check_gpu lspci amdg
fi
if check_gpu lspci amdgpu || check_gpu lshw amdgpu; then
if [ $BUNDLE -ne 0 ]; then
status "Downloading Linux ROCm ${ARCH} bundle"
curl --fail --show-error --location --progress-bar \
"https://ollama.com/download/ollama-linux-${ARCH}-rocm.tgz${VER_PARAM}" | \
$SUDO tar -xzf - -C "$OLLAMA_INSTALL_DIR"
install_success
status "AMD GPU ready."
exit 0
fi
# Look for pre-existing ROCm v6 before downloading the dependencies
for search in "${HIP_PATH:-''}" "${ROCM_PATH:-''}" "/opt/rocm" "/usr/lib64"; do
if [ -n "${search}" ] && [ -e "${search}/libhipblas.so.2" -o -e "${search}/lib/libhipblas.so.2" ]; then

View file

@ -3,6 +3,7 @@
# Script for common Dockerfile dependency installation in redhat linux based images
set -ex
set -o pipefail
MACHINE=$(uname -m)
if grep -i "centos" /etc/system-release >/dev/null; then
@ -29,7 +30,7 @@ if grep -i "centos" /etc/system-release >/dev/null; then
dnf install -y rh-git227-git
ln -s /opt/rh/rh-git227/root/usr/bin/git /usr/local/bin/git
fi
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++
dnf install -y devtoolset-10-gcc devtoolset-10-gcc-c++ pigz
elif grep -i "rocky" /etc/system-release >/dev/null; then
# Temporary workaround until rocky 8 AppStream ships GCC 10.4 (10.3 is incompatible with NVCC)
cat << EOF > /etc/yum.repos.d/Rocky-Vault.repo
@ -43,12 +44,21 @@ gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-rockyofficial
EOF
dnf install -y git \
gcc-toolset-10-gcc-10.2.1-8.2.el8 \
gcc-toolset-10-gcc-c++-10.2.1-8.2.el8
gcc-toolset-10-gcc-c++-10.2.1-8.2.el8 \
pigz
else
echo "ERROR Unexpected distro"
exit 1
fi
if [ "${MACHINE}" = "x86_64" ] ; then
curl -s -L https://github.com/ccache/ccache/releases/download/v4.10.2/ccache-4.10.2-linux-x86_64.tar.xz | tar -Jx -C /tmp --strip-components 1 && \
mv /tmp/ccache /usr/local/bin/
else
yum -y install epel-release
yum install -y ccache
fi
if [ -n "${CMAKE_VERSION}" ]; then
curl -s -L https://github.com/Kitware/CMake/releases/download/v${CMAKE_VERSION}/cmake-${CMAKE_VERSION}-linux-$(uname -m).tar.gz | tar -zx -C /usr --strip-components 1
fi

View file

@ -215,25 +215,20 @@ func GetManifest(mp ModelPath) (*Manifest, string, error) {
return nil, "", err
}
if _, err = os.Stat(fp); err != nil {
return nil, "", err
}
var manifest *Manifest
bts, err := os.ReadFile(fp)
f, err := os.Open(fp)
if err != nil {
return nil, "", fmt.Errorf("couldn't open file '%s'", fp)
return nil, "", err
}
defer f.Close()
shaSum := sha256.Sum256(bts)
shaStr := hex.EncodeToString(shaSum[:])
sha256sum := sha256.New()
if err := json.Unmarshal(bts, &manifest); err != nil {
var manifest Manifest
if err := json.NewDecoder(io.TeeReader(f, sha256sum)).Decode(&manifest); err != nil {
return nil, "", err
}
return manifest, shaStr, nil
return &manifest, hex.EncodeToString(sha256sum.Sum(nil)), nil
}
func GetModel(name string) (*Model, error) {
@ -374,13 +369,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
parameters := make(map[string]any)
var layers []Layer
var baseLayers []*layerGGML
for _, c := range modelfile.Commands {
mediatype := fmt.Sprintf("application/vnd.ollama.image.%s", c.Name)
command := c.Name
switch c.Name {
switch command {
case "model", "adapter":
var baseLayers []*layerGGML
if name := model.ParseName(c.Args); name.IsValid() {
if name := model.ParseName(c.Args); name.IsValid() && command == "model" {
baseLayers, err = parseFromModel(ctx, name, fn)
if err != nil {
return err
@ -414,14 +410,14 @@ func CreateModel(ctx context.Context, name model.Name, modelFileDir, quantizatio
}
defer blob.Close()
baseLayers, err = parseFromFile(ctx, blob, digest, fn)
baseLayers, err = parseFromFile(ctx, command, baseLayers, blob, digest, fn)
if err != nil {
return err
}
} else if file, err := os.Open(realpath(modelFileDir, c.Args)); err == nil {
defer file.Close()
baseLayers, err = parseFromFile(ctx, file, "", fn)
baseLayers, err = parseFromFile(ctx, command, baseLayers, file, "", fn)
if err != nil {
return err
}
@ -692,43 +688,18 @@ func CopyModel(src, dst model.Name) error {
return err
}
func deleteUnusedLayers(skipModelPath *ModelPath, deleteMap map[string]struct{}) error {
fp, err := GetManifestPath()
func deleteUnusedLayers(deleteMap map[string]struct{}) error {
manifests, err := Manifests()
if err != nil {
return err
}
walkFunc := func(path string, info os.FileInfo, _ error) error {
if info.IsDir() {
return nil
}
dir, file := filepath.Split(path)
dir = strings.Trim(strings.TrimPrefix(dir, fp), string(os.PathSeparator))
tag := strings.Join([]string{dir, file}, ":")
fmp := ParseModelPath(tag)
// skip the manifest we're trying to delete
if skipModelPath != nil && skipModelPath.GetFullTagname() == fmp.GetFullTagname() {
return nil
}
// save (i.e. delete from the deleteMap) any files used in other manifests
manifest, _, err := GetManifest(fmp)
if err != nil {
return err
}
for _, manifest := range manifests {
for _, layer := range manifest.Layers {
delete(deleteMap, layer.Digest)
}
delete(deleteMap, manifest.Config.Digest)
return nil
}
if err := filepath.Walk(fp, walkFunc); err != nil {
return err
}
// only delete the files which are still in the deleteMap
@ -781,8 +752,7 @@ func PruneLayers() error {
slog.Info(fmt.Sprintf("total blobs: %d", len(deleteMap)))
err = deleteUnusedLayers(nil, deleteMap)
if err != nil {
if err := deleteUnusedLayers(deleteMap); err != nil {
slog.Error(fmt.Sprintf("couldn't remove unused layers: %v", err))
return nil
}
@ -877,26 +847,19 @@ func PushModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn func(api.ProgressResponse)) error {
mp := ParseModelPath(name)
var manifest *Manifest
var err error
var noprune string
// build deleteMap to prune unused layers
deleteMap := make(map[string]struct{})
if !envconfig.NoPrune() {
manifest, _, err = GetManifest(mp)
if err != nil && !errors.Is(err, os.ErrNotExist) {
return err
manifest, _, err := GetManifest(mp)
if errors.Is(err, os.ErrNotExist) {
// noop
} else if err != nil && !errors.Is(err, os.ErrNotExist) {
return err
} else {
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}
}
if manifest != nil {
for _, l := range manifest.Layers {
deleteMap[l.Digest] = struct{}{}
}
if manifest.Config.Digest != "" {
deleteMap[manifest.Config.Digest] = struct{}{}
}
if manifest.Config.Digest != "" {
deleteMap[manifest.Config.Digest] = struct{}{}
}
}
@ -975,11 +938,9 @@ func PullModel(ctx context.Context, name string, regOpts *registryOptions, fn fu
return err
}
if noprune == "" {
fn(api.ProgressResponse{Status: "removing any unused layers"})
err = deleteUnusedLayers(nil, deleteMap)
if err != nil {
slog.Error(fmt.Sprintf("couldn't remove unused layers: %v", err))
if !envconfig.NoPrune() && len(deleteMap) > 0 {
fn(api.ProgressResponse{Status: "removing unused layers"})
if err := deleteUnusedLayers(deleteMap); err != nil {
fn(api.ProgressResponse{Status: fmt.Sprintf("couldn't remove unused layers: %v", err)})
}
}
@ -1000,12 +961,12 @@ func pullModelManifest(ctx context.Context, mp ModelPath, regOpts *registryOptio
}
defer resp.Body.Close()
var m *Manifest
var m Manifest
if err := json.NewDecoder(resp.Body).Decode(&m); err != nil {
return nil, err
}
return m, err
return &m, err
}
// GetSHA256Digest returns the SHA256 hash of a given buffer and returns it, and the size of buffer

View file

@ -51,6 +51,9 @@ func NewLayer(r io.Reader, mediatype string) (Layer, error) {
if err := os.Rename(temp.Name(), blob); err != nil {
return Layer{}, err
}
if err := os.Chmod(blob, 0o644); err != nil {
return Layer{}, err
}
}
return Layer{

View file

@ -5,6 +5,7 @@ import (
"encoding/hex"
"encoding/json"
"errors"
"fmt"
"io"
"log/slog"
"os"
@ -150,14 +151,16 @@ func Manifests() (map[model.Name]*Manifest, error) {
n := model.ParseNameFromFilepath(rel)
if !n.IsValid() {
slog.Warn("bad manifest name", "path", rel, "error", err)
slog.Warn("bad manifest name", "path", rel)
continue
}
m, err := ParseNamedManifest(n)
if err != nil {
if syntax := &(json.SyntaxError{}); errors.As(err, &syntax) {
slog.Warn("bad manifest", "name", n, "error", err)
continue
} else if err != nil {
return nil, fmt.Errorf("%s: %w", n, err)
}
ms[n] = m

View file

@ -81,7 +81,7 @@ func parseFromModel(ctx context.Context, name model.Name, fn func(api.ProgressRe
return layers, nil
}
func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
func parseFromZipFile(_ context.Context, command string, baseLayers []*layerGGML, f *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
fi, err := f.Stat()
if err != nil {
return nil, err
@ -108,16 +108,38 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
defer t.Close()
defer os.Remove(t.Name())
fn(api.ProgressResponse{Status: "converting model"})
if err := convert.Convert(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
var layerType string
switch command {
case "adapter":
var baseModel *llm.GGML
for _, l := range baseLayers {
if l.GGML != nil {
baseModel = l.GGML
break
}
}
if baseModel == nil {
return nil, fmt.Errorf("no base model specified for the adapter")
}
if err := convert.ConvertAdapter(convert.NewZipReader(r, p, 32<<20), t, baseModel.KV()); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.adapter"
case "model":
if err := convert.ConvertModel(convert.NewZipReader(r, p, 32<<20), t); err != nil {
return nil, err
}
layerType = "application/vnd.ollama.image.model"
}
if _, err := t.Seek(0, io.SeekStart); err != nil {
return nil, err
}
layer, err := NewLayer(t, "application/vnd.ollama.image.model")
layer, err := NewLayer(t, layerType)
if err != nil {
return nil, err
}
@ -139,7 +161,7 @@ func parseFromZipFile(_ context.Context, f *os.File, digest string, fn func(api.
return detectChatTemplate(layers)
}
func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
func parseFromFile(ctx context.Context, command string, baseLayers []*layerGGML, file *os.File, digest string, fn func(api.ProgressResponse)) (layers []*layerGGML, err error) {
sr := io.NewSectionReader(file, 0, 512)
contentType, err := detectContentType(sr)
if err != nil {
@ -150,7 +172,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
case "gguf", "ggla":
// noop
case "application/zip":
return parseFromZipFile(ctx, file, digest, fn)
return parseFromZipFile(ctx, command, baseLayers, file, digest, fn)
default:
return nil, fmt.Errorf("unsupported content type: %s", contentType)
}
@ -170,7 +192,7 @@ func parseFromFile(ctx context.Context, file *os.File, digest string, fn func(ap
}
mediatype := "application/vnd.ollama.image.model"
if ggml.Name() == "ggla" {
if ggml.Name() == "ggla" || ggml.KV().Kind() == "adapter" {
mediatype = "application/vnd.ollama.image.adapter"
} else if ggml.KV().Architecture() == "clip" {
mediatype = "application/vnd.ollama.image.projector"

View file

@ -153,7 +153,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), file, "", func(api.ProgressResponse) {})
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
@ -166,7 +166,7 @@ func TestParseFromFileFromLayer(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers2, err := parseFromFile(context.Background(), file, layers[0].Digest, func(api.ProgressResponse) {})
layers2, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file, layers[0].Digest, func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}
@ -206,7 +206,7 @@ func TestParseLayerFromCopy(t *testing.T) {
t.Fatalf("failed to seek to start: %v", err)
}
layers, err := parseFromFile(context.Background(), file2, "", func(api.ProgressResponse) {})
layers, err := parseFromFile(context.Background(), "model", []*layerGGML{}, file2, "", func(api.ProgressResponse) {})
if err != nil {
t.Fatalf("failed to parse from file: %v", err)
}

View file

@ -193,6 +193,11 @@ func (s *Scheduler) processPending(ctx context.Context) {
break
}
// Embedding models should always be loaded with parallel=1
if pending.model.CheckCapabilities(CapabilityCompletion) != nil {
numParallel = 1
}
// Evaluate if the model will fit in the available system memory, or if we should unload a model first
if len(gpus) == 1 && gpus[0].Library == "cpu" {
// simplifying assumption of defaultParallel when in CPU mode
@ -734,7 +739,10 @@ func pickBestFullFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoL
// If multiple Libraries are detected, pick the Library which loads the most layers for the model
func pickBestPartialFitByLibrary(req *LlmRequest, ggml *llm.GGML, gpus gpu.GpuInfoList, numParallel *int) gpu.GpuInfoList {
*numParallel = 1
if *numParallel <= 0 {
*numParallel = 1
req.opts.NumCtx = req.origNumCtx
}
byLibrary := gpus.ByLibrary()
if len(byLibrary) <= 1 {
return gpus

View file

@ -117,7 +117,6 @@ func newScenarioRequest(t *testing.T, ctx context.Context, modelName string, est
require.NoError(t, llm.WriteGGUF(f, llm.KV{
"general.architecture": "llama",
"general.name": "name",
"llama.context_length": uint32(32),
"llama.embedding_length": uint32(4096),
"llama.block_count": uint32(1),

View file

@ -45,7 +45,7 @@ type blobUpload struct {
}
const (
numUploadParts = 64
numUploadParts = 16
minUploadPartSize int64 = 100 * format.MegaByte
maxUploadPartSize int64 = 1000 * format.MegaByte
)