Compare commits

...

10 commits

Author SHA1 Message Date
9fb5f4446a
Merge https://github.com/ollama/ollama 2024-09-29 15:01:23 +05:30
Blake Mizerany
03608cb46e
server: close response body on error (#6986)
This change closes the response body when an error occurs in
makeRequestWithRetry. Previously, the first, non-200 response body was
not closed before reattempting the request. This change ensures that
the response body is closed in all cases where an error occurs,
preventing leaks of file descriptors.

Fixes #6974
2024-09-26 12:00:31 -07:00
Xe Iaso
450acb71a6
readme: fix llama3.1 -> llama3.2 typo (#6962) 2024-09-25 11:53:47 -07:00
Jeffrey Morgan
55ea963c9e
update default model to llama3.2 (#6959) 2024-09-25 11:11:22 -07:00
Daniel Hiltgen
e9e9bdb8d9
CI: Fix win arm version defect (#6940)
write-host in powershell writes directly to the console and will not be picked
up by a pipe.  Echo, or write-output will.
2024-09-24 15:18:10 -07:00
Alex Yang
35bb6d32b3
readme: update llamaindex links (#6939) 2024-09-24 12:15:43 -07:00
Deep Lakhani
98701b58b3
readme: add LLMChat to community integrations (#6919) 2024-09-23 17:49:46 -07:00
Mahesh Sathiamoorthy
ad935f45ac
examples: use punkt_tab instead of punkt (#6907)
This was causing an error since we depend on punkt_tab.
2024-09-21 18:55:28 -07:00
Daniel Hiltgen
dbba73469d
runner: Set windows above normal priority (#6905)
When running the subprocess as a background service windows may
throttle, which can lead to thrashing and very poor token rate.
2024-09-21 16:54:49 -07:00
Daniel Hiltgen
6c2eb73a70
Fix missing dep path on windows CPU runners (#6884)
GPUs handled the dependency path properly, but CPU runners didn't which
results in missing vc redist libraries on systems where the user didn't
already have it installed from some other app.
2024-09-21 16:28:29 -07:00
33 changed files with 125 additions and 111 deletions

View file

@ -354,7 +354,7 @@ jobs:
- name: Set Version
run: |
$ver=${env:GITHUB_REF_NAME}.trim("v")
write-host VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
echo VERSION=$ver | Out-File -FilePath ${env:GITHUB_ENV} -Encoding utf8 -Append
- uses: 'google-github-actions/auth@v2'
with:
project_id: 'ollama'

View file

@ -35,10 +35,10 @@ The official [Ollama Docker image](https://hub.docker.com/r/ollama/ollama) `olla
## Quickstart
To run and chat with [Llama 3.1](https://ollama.com/library/llama3.1):
To run and chat with [Llama 3.2](https://ollama.com/library/llama3.2):
```
ollama run llama3.1
ollama run llama3.2
```
## Model library
@ -49,6 +49,8 @@ Here are some example models that can be downloaded:
| Model | Parameters | Size | Download |
| ------------------ | ---------- | ----- | ------------------------------ |
| Llama 3.2 | 3B | 2.0GB | `ollama run llama3.2` |
| Llama 3.2 | 1B | 1.3GB | `ollama run llama3.2:1b` |
| Llama 3.1 | 8B | 4.7GB | `ollama run llama3.1` |
| Llama 3.1 | 70B | 40GB | `ollama run llama3.1:70b` |
| Llama 3.1 | 405B | 231GB | `ollama run llama3.1:405b` |
@ -99,16 +101,16 @@ See the [guide](docs/import.md) on importing models for more information.
### Customize a prompt
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.1` model:
Models from the Ollama library can be customized with a prompt. For example, to customize the `llama3.2` model:
```
ollama pull llama3.1
ollama pull llama3.2
```
Create a `Modelfile`:
```
FROM llama3.1
FROM llama3.2
# set the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
@ -143,7 +145,7 @@ ollama create mymodel -f ./Modelfile
### Pull a model
```
ollama pull llama3.1
ollama pull llama3.2
```
> This command can also be used to update a local model. Only the diff will be pulled.
@ -151,13 +153,13 @@ ollama pull llama3.1
### Remove a model
```
ollama rm llama3.1
ollama rm llama3.2
```
### Copy a model
```
ollama cp llama3.1 my-model
ollama cp llama3.2 my-model
```
### Multiline input
@ -181,14 +183,14 @@ The image features a yellow smiley face, which is likely the central focus of th
### Pass the prompt as an argument
```
$ ollama run llama3.1 "Summarize this file: $(cat README.md)"
$ ollama run llama3.2 "Summarize this file: $(cat README.md)"
Ollama is a lightweight, extensible framework for building and running language models on the local machine. It provides a simple API for creating, running, and managing models, as well as a library of pre-built models that can be easily used in a variety of applications.
```
### Show model information
```
ollama show llama3.1
ollama show llama3.2
```
### List models on your computer
@ -206,7 +208,7 @@ ollama ps
### Stop a model which is currently running
```
ollama stop llama3.1
ollama stop llama3.2
```
### Start Ollama
@ -228,7 +230,7 @@ Next, start the server:
Finally, in a separate shell, run a model:
```
./ollama run llama3.1
./ollama run llama3.2
```
## REST API
@ -239,7 +241,7 @@ Ollama has a REST API for running and managing models.
```
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt":"Why is the sky blue?"
}'
```
@ -248,7 +250,7 @@ curl http://localhost:11434/api/generate -d '{
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{ "role": "user", "content": "why is the sky blue?" }
]
@ -325,6 +327,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [ConfiChat](https://github.com/1runeberg/confichat) (Lightweight, standalone, multi-platform, and privacy focused LLM chat interface with optional encryption)
- [Archyve](https://github.com/nickthecook/archyve) (RAG-enabling document library)
- [crewAI with Mesop](https://github.com/rapidarchitect/ollama-crew-mesop) (Mesop Web Interface to run crewAI with Ollama)
- [LLMChat](https://github.com/trendy-design/llmchat) (Privacy focused, 100% local, intuitive all-in-one chat interface)
### Terminal
@ -377,7 +380,7 @@ See the [API documentation](./docs/api.md) for all endpoints.
- [LangChainGo](https://github.com/tmc/langchaingo/) with [example](https://github.com/tmc/langchaingo/tree/main/examples/ollama-completion-example)
- [LangChain4j](https://github.com/langchain4j/langchain4j) with [example](https://github.com/langchain4j/langchain4j-examples/tree/main/ollama-examples/src/main/java)
- [LangChainRust](https://github.com/Abraxas-365/langchain-rust) with [example](https://github.com/Abraxas-365/langchain-rust/blob/main/examples/llm_ollama.rs)
- [LlamaIndex](https://gpt-index.readthedocs.io/en/stable/examples/llm/ollama.html)
- [LlamaIndex](https://docs.llamaindex.ai/en/stable/examples/llm/ollama/) and [LlamaIndexTS](https://ts.llamaindex.ai/modules/llms/available_llms/ollama)
- [LiteLLM](https://github.com/BerriAI/litellm)
- [OllamaFarm for Go](https://github.com/presbrey/ollamafarm)
- [OllamaSharp for .NET](https://github.com/awaescher/OllamaSharp)

View file

@ -142,7 +142,7 @@ SetupAppRunningError=Another Ollama installer is running.%n%nPlease cancel or fi
;FinishedHeadingLabel=Run your first model
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.1
;FinishedLabel=%nRun this command in a PowerShell or cmd terminal.%n%n%n ollama run llama3.2
;ClickFinish=%n
[Registry]

View file

@ -4,5 +4,5 @@ write-host "Welcome to Ollama!"
write-host ""
write-host "Run your first model:"
write-host ""
write-host "`tollama run llama3.1"
write-host "`tollama run llama3.2"
write-host ""

View file

@ -69,7 +69,7 @@ Enable JSON mode by setting the `format` parameter to `json`. This will structur
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "Why is the sky blue?"
}'
```
@ -80,7 +80,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"response": "The",
"done": false
@ -102,7 +102,7 @@ To calculate how fast the response is generated in tokens per second (token/s),
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "",
"done": true,
@ -124,7 +124,7 @@ A response can be received in one reply when streaming is off.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "Why is the sky blue?",
"stream": false
}'
@ -136,7 +136,7 @@ If `stream` is set to `false`, the response will be a single JSON object:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@ -194,7 +194,7 @@ curl http://localhost:11434/api/generate -d '{
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "What color is the sky at different times of the day? Respond using JSON",
"format": "json",
"stream": false
@ -205,7 +205,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-11-09T21:07:55.186497Z",
"response": "{\n\"morning\": {\n\"color\": \"blue\"\n},\n\"noon\": {\n\"color\": \"blue-gray\"\n},\n\"afternoon\": {\n\"color\": \"warm gray\"\n},\n\"evening\": {\n\"color\": \"orange\"\n}\n}\n",
"done": true,
@ -327,7 +327,7 @@ If you want to set custom options for the model at runtime rather than in the Mo
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "Why is the sky blue?",
"stream": false,
"options": {
@ -368,7 +368,7 @@ curl http://localhost:11434/api/generate -d '{
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"response": "The sky is blue because it is the color of the sky.",
"done": true,
@ -390,7 +390,7 @@ If an empty prompt is provided, the model will be loaded into memory.
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1"
"model": "llama3.2"
}'
```
@ -400,7 +400,7 @@ A single JSON object is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-12-18T19:52:07.071755Z",
"response": "",
"done": true
@ -415,7 +415,7 @@ If an empty prompt is provided and the `keep_alive` parameter is set to `0`, a m
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"keep_alive": 0
}'
```
@ -426,7 +426,7 @@ A single JSON object is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2024-09-12T03:54:03.516566Z",
"response": "",
"done": true,
@ -472,7 +472,7 @@ Send a chat message with a streaming response.
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "user",
@ -488,7 +488,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@ -503,7 +503,7 @@ Final response:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 4883583458,
@ -521,7 +521,7 @@ Final response:
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "user",
@ -536,7 +536,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@ -560,7 +560,7 @@ Send a chat message with a conversation history. You can use this same approach
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "user",
@ -584,7 +584,7 @@ A stream of JSON objects is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T08:52:19.385406455-07:00",
"message": {
"role": "assistant",
@ -598,7 +598,7 @@ Final response:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-08-04T19:22:45.499127Z",
"done": true,
"total_duration": 8113331500,
@ -656,7 +656,7 @@ curl http://localhost:11434/api/chat -d '{
```shell
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "user",
@ -674,7 +674,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2023-12-12T14:13:43.416799Z",
"message": {
"role": "assistant",
@ -696,7 +696,7 @@ curl http://localhost:11434/api/chat -d '{
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "user",
@ -735,7 +735,7 @@ curl http://localhost:11434/api/chat -d '{
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at": "2024-07-22T20:33:28.123648Z",
"message": {
"role": "assistant",
@ -771,7 +771,7 @@ If the messages array is empty, the model will be loaded into memory.
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": []
}'
```
@ -779,7 +779,7 @@ curl http://localhost:11434/api/chat -d '{
##### Response
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at":"2024-09-12T21:17:29.110811Z",
"message": {
"role": "assistant",
@ -798,7 +798,7 @@ If the messages array is empty and the `keep_alive` parameter is set to `0`, a m
```
curl http://localhost:11434/api/chat -d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [],
"keep_alive": 0
}'
@ -810,7 +810,7 @@ A single JSON object is returned:
```json
{
"model": "llama3.1",
"model": "llama3.2",
"created_at":"2024-09-12T21:33:17.547535Z",
"message": {
"role": "assistant",
@ -989,7 +989,7 @@ Show information about a model including details, modelfile, template, parameter
```shell
curl http://localhost:11434/api/show -d '{
"name": "llama3.1"
"name": "llama3.2"
}'
```
@ -1050,7 +1050,7 @@ Copy a model. Creates a model with another name from an existing model.
```shell
curl http://localhost:11434/api/copy -d '{
"source": "llama3.1",
"source": "llama3.2",
"destination": "llama3-backup"
}'
```
@ -1105,7 +1105,7 @@ Download a model from the ollama library. Cancelled pulls are resumed from where
```shell
curl http://localhost:11434/api/pull -d '{
"name": "llama3.1"
"name": "llama3.2"
}'
```

View file

@ -63,7 +63,7 @@ docker run -d --device /dev/kfd --device /dev/dri -v ollama:/root/.ollama -p 114
Now you can run a model:
```
docker exec -it ollama ollama run llama3.1
docker exec -it ollama ollama run llama3.2
```
### Try different models

View file

@ -32,7 +32,7 @@ When using the API, specify the `num_ctx` parameter:
```shell
curl http://localhost:11434/api/generate -d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "Why is the sky blue?",
"options": {
"num_ctx": 4096
@ -232,7 +232,7 @@ curl http://localhost:11434/api/chat -d '{"model": "mistral"}'
To preload a model using the CLI, use the command:
```shell
ollama run llama3.1 ""
ollama run llama3.2 ""
```
## How do I keep a model loaded in memory or make it unload immediately?
@ -240,7 +240,7 @@ ollama run llama3.1 ""
By default models are kept in memory for 5 minutes before being unloaded. This allows for quicker response times if you're making numerous requests to the LLM. If you want to immediately unload a model from memory, use the `ollama stop` command:
```shell
ollama stop llama3.1
ollama stop llama3.2
```
If you're using the API, use the `keep_alive` parameter with the `/api/generate` and `/api/chat` endpoints to set the amount of time that a model stays in memory. The `keep_alive` parameter can be set to:
@ -251,12 +251,12 @@ If you're using the API, use the `keep_alive` parameter with the `/api/generate`
For example, to preload a model and leave it in memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": -1}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": -1}'
```
To unload the model and free up memory use:
```shell
curl http://localhost:11434/api/generate -d '{"model": "llama3.1", "keep_alive": 0}'
curl http://localhost:11434/api/generate -d '{"model": "llama3.2", "keep_alive": 0}'
```
Alternatively, you can change the amount of time all models are loaded into memory by setting the `OLLAMA_KEEP_ALIVE` environment variable when starting the Ollama server. The `OLLAMA_KEEP_ALIVE` variable uses the same parameter types as the `keep_alive` parameter types mentioned above. Refer to the section explaining [how to configure the Ollama server](#how-do-i-configure-ollama-server) to correctly set the environment variable.

View file

@ -50,7 +50,7 @@ INSTRUCTION arguments
An example of a `Modelfile` creating a mario blueprint:
```modelfile
FROM llama3.1
FROM llama3.2
# sets the temperature to 1 [higher is more creative, lower is more coherent]
PARAMETER temperature 1
# sets the context window size to 4096, this controls how many tokens the LLM can use as context to generate the next token
@ -72,10 +72,10 @@ More examples are available in the [examples directory](../examples).
To view the Modelfile of a given model, use the `ollama show --modelfile` command.
```bash
> ollama show --modelfile llama3.1
> ollama show --modelfile llama3.2
# Modelfile generated by "ollama show"
# To build a new Modelfile based on this one, replace the FROM line with:
# FROM llama3.1:latest
# FROM llama3.2:latest
FROM /Users/pdevine/.ollama/models/blobs/sha256-00e1317cbf74d901080d7100f57580ba8dd8de57203072dc6f668324ba545f29
TEMPLATE """{{ if .System }}<|start_header_id|>system<|end_header_id|>
@ -103,7 +103,7 @@ FROM <model name>:<tag>
#### Build from existing model
```modelfile
FROM llama3.1
FROM llama3.2
```
A list of available base models:

View file

@ -25,7 +25,7 @@ chat_completion = client.chat.completions.create(
'content': 'Say this is a test',
}
],
model='llama3.1',
model='llama3.2',
)
response = client.chat.completions.create(
@ -46,13 +46,13 @@ response = client.chat.completions.create(
)
completion = client.completions.create(
model="llama3.1",
model="llama3.2",
prompt="Say this is a test",
)
list_completion = client.models.list()
model = client.models.retrieve("llama3.1")
model = client.models.retrieve("llama3.2")
embeddings = client.embeddings.create(
model="all-minilm",
@ -74,7 +74,7 @@ const openai = new OpenAI({
const chatCompletion = await openai.chat.completions.create({
messages: [{ role: 'user', content: 'Say this is a test' }],
model: 'llama3.1',
model: 'llama3.2',
})
const response = await openai.chat.completions.create({
@ -94,13 +94,13 @@ const response = await openai.chat.completions.create({
})
const completion = await openai.completions.create({
model: "llama3.1",
model: "llama3.2",
prompt: "Say this is a test.",
})
const listCompletion = await openai.models.list()
const model = await openai.models.retrieve("llama3.1")
const model = await openai.models.retrieve("llama3.2")
const embedding = await openai.embeddings.create({
model: "all-minilm",
@ -114,7 +114,7 @@ const embedding = await openai.embeddings.create({
curl http://localhost:11434/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3.1",
"model": "llama3.2",
"messages": [
{
"role": "system",
@ -154,13 +154,13 @@ curl http://localhost:11434/v1/chat/completions \
curl http://localhost:11434/v1/completions \
-H "Content-Type: application/json" \
-d '{
"model": "llama3.1",
"model": "llama3.2",
"prompt": "Say this is a test"
}'
curl http://localhost:11434/v1/models
curl http://localhost:11434/v1/models/llama3.1
curl http://localhost:11434/v1/models/llama3.2
curl http://localhost:11434/v1/embeddings \
-H "Content-Type: application/json" \
@ -274,7 +274,7 @@ curl http://localhost:11434/v1/embeddings \
Before using a model, pull it locally `ollama pull`:
```shell
ollama pull llama3.1
ollama pull llama3.2
```
### Default model names
@ -282,7 +282,7 @@ ollama pull llama3.1
For tooling that relies on default OpenAI model names such as `gpt-3.5-turbo`, use `ollama cp` to copy an existing model name to a temporary name:
```
ollama cp llama3.1 gpt-3.5-turbo
ollama cp llama3.2 gpt-3.5-turbo
```
Afterwards, this new model name can be specified the `model` field:

View file

@ -33,7 +33,7 @@ Omitting a template in these models puts the responsibility of correctly templat
To add templates in your model, you'll need to add a `TEMPLATE` command to the Modelfile. Here's an example using Meta's Llama 3.
```dockerfile
FROM llama3.1
FROM llama3.2
TEMPLATE """{{- if .System }}<|start_header_id|>system<|end_header_id|>

View file

@ -15,7 +15,7 @@ import { Ollama } from "@langchain/community/llms/ollama";
const ollama = new Ollama({
baseUrl: "http://localhost:11434",
model: "llama3.1",
model: "llama3.2",
});
const answer = await ollama.invoke(`why is the sky blue?`);
@ -23,7 +23,7 @@ const answer = await ollama.invoke(`why is the sky blue?`);
console.log(answer);
```
That will get us the same thing as if we ran `ollama run llama3.1 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
That will get us the same thing as if we ran `ollama run llama3.2 "why is the sky blue"` in the terminal. But we want to load a document from the web to ask a question against. **Cheerio** is a great library for ingesting a webpage, and **LangChain** uses it in their **CheerioWebBaseLoader**. So let's install **Cheerio** and build that part of the app.
```bash
npm install cheerio

View file

@ -29,7 +29,7 @@ Ollama uses unicode characters for progress indication, which may render as unkn
Here's a quick example showing API access from `powershell`
```powershell
(Invoke-WebRequest -method POST -Body '{"model":"llama3.1", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
(Invoke-WebRequest -method POST -Body '{"model":"llama3.2", "prompt":"Why is the sky blue?", "stream": false}' -uri http://localhost:11434/api/generate ).Content | ConvertFrom-json
```
## Troubleshooting

View file

@ -35,7 +35,7 @@ func main() {
ctx := context.Background()
req := &api.ChatRequest{
Model: "llama3.1",
Model: "llama3.2",
Messages: messages,
}

View file

@ -4,10 +4,10 @@ This example provides an interface for asking questions to a PDF document.
## Setup
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3.2` model installed:
```
ollama pull llama3.1
ollama pull llama3.2
```
2. Install the Python Requirements.

View file

@ -51,7 +51,7 @@ while True:
template=template,
)
llm = Ollama(model="llama3.1", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
llm = Ollama(model="llama3.2", callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]))
qa_chain = RetrievalQA.from_chain_type(
llm,
retriever=vectorstore.as_retriever(),

View file

@ -4,10 +4,10 @@ This example summarizes the website, [https://ollama.com/blog/run-llama2-uncenso
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3.2` model installed:
```bash
ollama pull llama3.1
ollama pull llama3.2
```
2. Install the Python Requirements.

View file

@ -5,7 +5,7 @@ from langchain.chains.summarize import load_summarize_chain
loader = WebBaseLoader("https://ollama.com/blog/run-llama2-uncensored-locally")
docs = loader.load()
llm = Ollama(model="llama3.1")
llm = Ollama(model="llama3.2")
chain = load_summarize_chain(llm, chain_type="stuff")
result = chain.invoke(docs)

View file

@ -4,10 +4,10 @@ This example is a basic "hello world" of using LangChain with Ollama.
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3.2` model installed:
```bash
ollama pull llama3.1
ollama pull llama3.2
```
2. Install the Python Requirements.

View file

@ -1,6 +1,6 @@
from langchain.llms import Ollama
input = input("What is your question?")
llm = Ollama(model="llama3.1")
llm = Ollama(model="llama3.2")
res = llm.predict(input)
print (res)

View file

@ -1,4 +1,4 @@
FROM llama3.1
FROM llama3.2
PARAMETER temperature 1
SYSTEM """
You are Mario from super mario bros, acting as an assistant.

View file

@ -2,12 +2,12 @@
# Example character: Mario
This example shows how to create a basic character using Llama3.1 as the base model.
This example shows how to create a basic character using Llama 3.2 as the base model.
To run this example:
1. Download the Modelfile
2. `ollama pull llama3.1` to get the base model used in the model file.
2. `ollama pull llama3.2` to get the base model used in the model file.
3. `ollama create NAME -f ./Modelfile`
4. `ollama run NAME`
@ -18,7 +18,7 @@ Ask it some questions like "Who are you?" or "Is Peach in trouble again?"
What the model file looks like:
```
FROM llama3.1
FROM llama3.2
PARAMETER temperature 1
SYSTEM """
You are Mario from Super Mario Bros, acting as an assistant.

View file

@ -1,14 +1,14 @@
# RAG Hallucination Checker using Bespoke-Minicheck
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.1` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
This example allows the user to ask questions related to a document, which can be specified via an article url. Relevant chunks are retreived from the document and given to `llama3.2` as context to answer the question. Then each sentence in the answer is checked against the retrieved chunks using `bespoke-minicheck` to ensure that the answer does not contain hallucinations.
## Running the Example
1. Ensure `all-minilm` (embedding) `llama3.1` (chat) and `bespoke-minicheck` (check) models installed:
1. Ensure `all-minilm` (embedding) `llama3.2` (chat) and `bespoke-minicheck` (check) models installed:
```bash
ollama pull all-minilm
ollama pull llama3.1
ollama pull llama3.2
ollama pull bespoke-minicheck
```

View file

@ -9,7 +9,7 @@ import nltk
warnings.filterwarnings(
"ignore", category=FutureWarning, module="transformers.tokenization_utils_base"
)
nltk.download("punkt", quiet=True)
nltk.download("punkt_tab", quiet=True)
def getArticleText(url):
@ -119,7 +119,7 @@ if __name__ == "__main__":
system_prompt = f"Only use the following information to answer the question. Do not use anything else: {sourcetext}"
ollama_response = ollama.generate(
model="llama3.1",
model="llama3.2",
prompt=question,
system=system_prompt,
options={"stream": False},

View file

@ -2,7 +2,7 @@ import requests
import json
import random
model = "llama3.1"
model = "llama3.2"
template = {
"firstName": "",
"lastName": "",

View file

@ -12,7 +12,7 @@ countries = [
"France",
]
country = random.choice(countries)
model = "llama3.1"
model = "llama3.2"
prompt = f"generate one realistically believable sample data set of a persons first name, last name, address in {country}, and phone number. Do not use common names. Respond using JSON. Key names should have no backslashes, values should use plain ascii with no special characters."

View file

@ -6,10 +6,10 @@ There are two python scripts in this example. `randomaddresses.py` generates ran
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3.2` model installed:
```bash
ollama pull llama3.1
ollama pull llama3.2
```
2. Install the Python Requirements.

View file

@ -2,7 +2,7 @@ import json
import requests
# NOTE: ollama must be running for this to work, start the ollama app or run `ollama serve`
model = "llama3.1" # TODO: update this for whatever model you wish to use
model = "llama3.2" # TODO: update this for whatever model you wish to use
def chat(messages):

View file

@ -4,10 +4,10 @@ The **chat** endpoint is one of two ways to generate text from an LLM with Ollam
## Running the Example
1. Ensure you have the `llama3.1` model installed:
1. Ensure you have the `llama3.2` model installed:
```bash
ollama pull llama3.1
ollama pull llama3.2
```
2. Install the Python Requirements.

View file

@ -1,6 +1,6 @@
import * as readline from "readline";
const model = "llama3.1";
const model = "llama3.2";
type Message = {
role: "assistant" | "user" | "system";
content: string;

View file

@ -205,13 +205,16 @@ func GetGPUInfo() GpuInfoList {
if err != nil {
slog.Warn("error looking up system memory", "error", err)
}
depPath := LibraryDir()
cpus = []CPUInfo{
{
GpuInfo: GpuInfo{
memInfo: mem,
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
memInfo: mem,
Library: "cpu",
Variant: cpuCapability.String(),
ID: "0",
DependencyPath: depPath,
},
},
}
@ -224,8 +227,6 @@ func GetGPUInfo() GpuInfoList {
return GpuInfoList{cpus[0].GpuInfo}
}
depPath := LibraryDir()
// Load ALL libraries
cHandles = initCudaHandles()

View file

@ -4,7 +4,10 @@ import (
"syscall"
)
const CREATE_DEFAULT_ERROR_MODE = 0x04000000
const (
CREATE_DEFAULT_ERROR_MODE = 0x04000000
ABOVE_NORMAL_PRIORITY_CLASS = 0x00008000
)
var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// Wire up the default error handling logic If for some reason a DLL is
@ -12,5 +15,8 @@ var LlamaServerSysProcAttr = &syscall.SysProcAttr{
// the user can either fix their PATH, or report a bug. Without this
// setting, the process exits immediately with a generic exit status but no
// way to (easily) figure out what the actual missing DLL was.
CreationFlags: CREATE_DEFAULT_ERROR_MODE,
//
// Setting Above Normal priority class ensures when running as a "background service"
// with "programs" given best priority, we aren't starved of cpu cycles
CreationFlags: CREATE_DEFAULT_ERROR_MODE | ABOVE_NORMAL_PRIORITY_CLASS,
}

View file

@ -19,7 +19,7 @@ export default function () {
const [step, setStep] = useState<Step>(Step.WELCOME)
const [commandCopied, setCommandCopied] = useState<boolean>(false)
const command = 'ollama run llama3.1'
const command = 'ollama run llama3.2'
return (
<div className='drag'>

View file

@ -1025,6 +1025,8 @@ func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.UR
switch {
case resp.StatusCode == http.StatusUnauthorized:
resp.Body.Close()
// Handle authentication error with one retry
challenge := parseRegistryChallenge(resp.Header.Get("www-authenticate"))
token, err := getAuthorizationToken(ctx, challenge)
@ -1040,8 +1042,10 @@ func makeRequestWithRetry(ctx context.Context, method string, requestURL *url.UR
}
}
case resp.StatusCode == http.StatusNotFound:
resp.Body.Close()
return nil, os.ErrNotExist
case resp.StatusCode >= http.StatusBadRequest:
defer resp.Body.Close()
responseBody, err := io.ReadAll(resp.Body)
if err != nil {
return nil, fmt.Errorf("%d: %s", resp.StatusCode, err)